
 
 
 
 
 
 
 
 
 
 
 

NEW RESULTS IN BACKSTEPPING DESIGN FOR ELECTROHYDRAULIC SERVOS: 
 ADAPTIVE CONTROL SYNTHESIS 

 
 

Ioan Ursu and Felicia Ursu 
 
 

“Elie Carafoli” National Institute of Aerospace Research 
 Bdul Iuliu Maniu 220 Bucharest 06 1126 

 
 
 
 

Abstract: This paper continues recent research of authors, considering the adaptive 
control synthesis in the presence of parametric uncertainties, with application to 
electrohydraulic servos actuating primary flight controls. To account for these parametric 
uncertainties in the model, a parameter adaptation scheme is essential. So, certain 
parameters are adjusted on line; using in synthesis the methods of Control Lyapunov 
Functions and backstepping, the obtained dynamic update law for parameters, together 
with the system’s model, would render the closed loop system stable and would achieve 
the regulation of the output. The work also illustrates how the main theory can be brought 
or adapted to control design practice as defined by a given mathematical model. 
Barbalat's Lemma is used in the proof of control law structure. Numerical simulations are 
reported from viewpoint of servo time constant performance. . 
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1. INTRODUCTION 

 
 
This paper continues the theme of recent researches 
of the authors (Ursu and Popescu, 2003; Ursu et al., 
2004; I. Ursu and F. Ursu, 2004; Ursu et al., 2005), 
by detailing procedure of adaptive backstepping 
control synthesis for the Electrohydraulic Servos 
(EHSs). This procedure of adaptive backstepping is 
introduced avant la lettre in Kanellakopoulos et al., 
(1991), where a characterization of the class of 
nonlinear systems to which the new adaptive scheme 
is applicable is achieved. In our paper, a simpler 
scheme than those described in Kanellakopoulos et 
al. (1991) is proposed for an electrohydraulic servo 
with unknown or uncertain parameters. So, this 
parameter is estimated on line, in the framework of a 
recurrent control law using the methods of Control 
Lyapunov Functions and backstepping. The 
estimation error is proved to be asymptotically stable. 
The obtained control law, including a dynamic 
update for uncertain parameter, and operating on the 

system’s model, renders the closed loop stable and 
ensure the regulation of the desired output.  
 
 

2. BACKSTEPPING ADAPTIVE CONTROL 
SYNTHESIS FOR AN ELECTROHYDRAULIC 

SERVO 
 
The basic backstepping assumes the knowledge of 
the system parameters. In fact, frequently it may be 
necessary to identify some of these parameters off–
line or estimate them using on-line adaptive schemes. 
The essence of adaptive control is that, by learning 
from the past information through this parameter 
adaptation mechanism, the real parametric 
uncertainty can be evaded. To illustrate the adaptive 
backstepping machinery, let consider the 
mathematical model of electrohydraulic servo (see 
modelling aspects in Ursu and Ursu, 2002; Halanay 
et al., 2004): 
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These differential equations are reported having as a 
reference point the hydromechanical servome-
chanism SMHR included in the aileron control chain 
of Romanian military jet IAR 99. The state variables 
are denoted by: x1 [cm] − EHS load displacement; 
x2 [cm/s] − EHS load velocity; 3x , 4x  [daN/cm2] − 
pressures in the cylinder chambers; 5x  [cm] − valve 
position; u [V] − control variable. The nominal 
values of the parameters appearing in equations (1) 
are: m = 0.033 daNs2/cm − equivalent inertial load of 
primary control surface reduced at the EHS’s rod; 
f = 1 daNs/cm − equivalent viscous friction force 
coefficient; k = 100 daN/cm − equivalent aero-
dynamic elastic force coefficient; S = 10 cm2 − 
EHS’s piston area; w = 0.05 cm − valve-port width; 
B = 6 000 daN/cm2 − bulk modulus of the oil; 
pa = 210 daN/cm2 − supply pressure; V = 30 cm3 − 
cylinder semivolume; τ = 1/573 s − time constant of 
the (servo)valve; lk = 5/210 cm5/(daN×s) − internal 
leakage cylinder’s coefficient; cd = 0.63 − volumetric 
flow coefficient of the valve port; 
ρ = 85/(981×105) daNs2/cm4 − volumetric density of 
oil; kv = 0.0085/(0.05×10) cm/V − valve 
displacement/voltage coefficient.  
 
In the equations (2) is assumed the uncertainty of the 
coefficient c enclosed in the mixed parameter Bc 

Bc=:α .  (4)

Thus, these equations will be rewritten in the form  
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and will be added to the equations of the system (1) 
and (3) to define a system whose equations belong to 
a general class of nonlinear systems treated in 
Kanellakopoulos et al., (1991) 
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where nR∈x  is the state vector, R∈u  is the control 
vector, ii g,f,g,f 00  are smooth vector fields of 

appropriate dimensions and [ ]T1 ,..., pθθ  is the vector 

of unknown (uncertain) constant parameters. The 
geometrical approach therein developed was avoided 
in this paper, instead using a simple, intuitive scheme 
of adaptive backstepping having as object the system 
(1), (2'), (3), which represents the electrohydraulic 
servo as a tracking system. Therefore, for this system 
the aim of control synthesis is to have a good 
tracking by the state variable x1 of the specified x1d 
desired position references. The closed loop 
performance of the system can be measured by the 
actual (realised) servo time constant sτ . Thus, a 
good tracking system is characterised by fast (little) 
time constant sτ . Both servo time constant and 
position reference signal are in connection with the 
response of a first order system to step inputs xis 
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x1s stands for stationary value of the state x1, and t1r 
stands for associated desired time constants.  
 
The main result of the paper is given by the 
following 

Proposition. Consider the uncertain parameter α  
for the EHS mathematical model (1), (2'), (3). Let 

0,0,0,0 321 >ρ>>> αkkk  be tuning parameters 
and 0ˆ ≠α  the notation for the estimate of the 
uncertain parameter α . Define the learning error 

α−αα ˆ~ =: . Under the rather physical assumptions 
,1 SVx < ,0 3 apx <<  apx << 40 , the control u 

given by  
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when applied to (1), (2'), (3), guarantees asymptotic 
stability for the learning error α~  and the position 
tracking error dxxe 111 : −= ; more precisely, 
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Proof: By inspecting the system (1), (2'), (3), it 
follows that the internal states x1 and x2 are stable; 
indeed, the roots of the characteristic equation  

02 =+λ+λ kfm  (12)

are stable roots − negative real, or complex with 
negative real parts − due to the viscous friction force 
in hydraulic cylinder. Therefore, a special care to 
stabilise the states x1, x2 is not necessary. Thus, 
evading the equations (1) in the backstepping 
procedure, this technique will be applied only with 
regard to the variables x3 − x4 and x5. Consider now 
the Lyapunov like function  
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Then, its derivative along the system (1), (2'), (3) is 
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Now, by using (10), (11), (8), (9), we have  
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By substituting (9)−(11), one gets  
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The equations for the errors ep, e5 can be written as 
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A tedious way to continue the proof is that of 
checking the asymptotic stability of the errors 

α~,, 5eep  by using the second method of Lyapunov 
for systems with variable coefficients (see Kalman 
and Bertram, (1960), Theorem 1). An alternative and 
very efficient procedure will be shown bellow: that 
of using Barbalat's Lemma (Popov, 1973). The 
reasoning is as follows. Making use of the definitions 
(9)−(11) for 5, eep and α~ , we have ( ) 001 >V  when 

0→t  (see 05 ≠dx ). Since 01 ≤V& , it is obvious that 
( ) ( )00 11 VtV ≤≤ , ( ) 0>∀ t , hence the positive 

function ( )tV1  is bounded and consequently 

5, eep and α~  are bounded; so, ( )tpp =  is also 

bounded in the interval [ )∞=+ ,0R . Now, taking the 
derivative of (14) yields  
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Furthermore, 1V&&  is bounded, provided that α̂,, 21 gg  
remain bounded during the dynamical process; this 
condition holds, having in view the assumptions 
involving the variables 431 ,, xxx . So, 1V&  is 
uniformly continuous (as having a bounded 
derivative). Let us now consider Barbalat's Lemma: 

If the function f(t) is differentiable and has a finite 
limit ( )tf

t→∞
lim , and if f& is uniformly continuous, then 

( ) 0lim =
→∞

tf
t

& . 

Thus, Barbalat’s Lemma will be applied to show that 
the errors pe  and 5e  tend to zero as time tends to 
infinity. Indeed, applying Barbalat's Lemma, 

01 →V& . Hence, pe  and 5 e  tend to zero. Now, let's 
look at the equations in (1), which can be rewritten as 
follows 
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and p is now seen as a bounded function of 
( ) ( ) ( )txtxtppt 43:, −== . The most usual case is 

that of complex roots with negative real parts, 
considered in the precedent works (Ursu and 
Popescu, 2003, Ursu et al., 2004, Ursu and Ursu, 
2004). But, the occurrence of negative real roots is 
not excluded. With initial conditions 

( ) ( ) 000 11 == xx & , the solution of (16) in this 
aperiodic case is  
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with qhrhqhrq −>−= ,,,,0222  positive. This 
variant is inherent to hydraulic servo systems owing 
to small viscous friction in cylinder. Define 
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and let us also consider  
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Since 0→pe  when ∞→t , it is clear that 

( ) ( )tptp d11 → , as ∞→t ; this means: ( ) 0>ε∀ , 
(∃) ( )εδ  such that for ( )εδ>t  we have 

( ) ( ) ε<− tptp d11 . Then, if ( )εδ>t  
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Therefore 

( ) ( ) ∞→→ ttxtx d   as  ~
11 . (20)

Then: 
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and, based on definition relations 

m
krm

fhrhq ==−= 2222 ,2,  

simple, successive calculations finally give 

( ) ∞→→ txtx sd   as ~
11 . (21)

Thus, from (20) and (21), a standard proceeding 
gives 

( ) ∞→→ txtx s   as 11  (22)

and so ends the proof. � 
 
Let notice that if 0~ =α , the control (7) is identical 
with the “nonadaptive” control given in Ursu et al., 
(2004), Ursu and Ursu, (2004).  
 

 
3. SIMULATION RESULTS  

 
Fourth order Runge-Kutta integrations were 
performed with integration step 0.003 s. Numerical 
data are those already given in Section 2. For the 
simulations, the following values of the tuning 
parameters were selected as suitable: 0001.0=ρα , 

005.01 =k , 0005.02 =k , 13 =k .  
 
Reference signal parameters were cm255.01 =sx  
and s0001.01 =rt  (Fig. 1),  s001.01 =rt  (Fig. 2). 
Number of integration steps in Figures is 50. Thus, 
the presented plots exhibit the fact that proposed 
adaptive backstepping controller achieves good 
tracking performance, when compared with the ideal, 
nonadaptive case (Ursu and Popescu, 2003, Ursu et 
al., 2004, Ursu and Ursu, 2004). Indeed, the servo 
time constants for the system with uncertain or 
completely unknown parameter c are very closely to 
the measured SMHR time constant, s037.0=τs  
(Ursu, 1984), and to the servo time constant of the 
ideal, “nonadaptive” system, with total parameter 
knowledge, s037.0=τs . The Figures show that the 
estimation error converges very quickly to zero. 
Performing various numerical simulations has 
demonstrated that the initial parameter estimate ( )0α̂  
doesn’t affect the estimation process. Taking into 
account state and control limitations, the global 
asymptotic stability of tracking errors in Proposition 
cannot be stipulated. Moreover, suitable dx1  and 
tuning parameters 0,0,0,0 321 >ρ>>> αkkk , 
must be chosen to preserve these constraints. 
Certainly, an increased sx1 requires a decreased claim 
on desired time constant rt1 . 
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Fig. 1. Response to position reference signal; reference signal parameters : cm255.01 =sx ,  s0001.01 =rt .  
Plots of variables ux ,1  and B/~α . ( ) Bc5.10ˆ =α , τs ≅ 0.036 s. 

 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2. Response to a slower position reference signal; reference signal parameters : cm255.01 =sx , 

 s001.01 =rt . Plots of variables ux ,1  and B/~α . ( ) Bc5.00ˆ =α , τs ≅ 0.038 s. 
 



4. CONCLUSIONS 
 
In the paper, adaptive backstepping machinery is 
proposed to providing the control law in the case of 
an EHS five-dimensional mathematical model having 
uncertain or unknown parameters. Our main 
contribution consists in developing of a relatively 
simple, intuitive scheme of adaptive backstepping, 
having as object the EHS mathematical model. Thus, 
the designer of control law is able to avoid a 
complicated geometrical approach described in 
Kanellakopoulos et al. (1991). Worthy noting, the 
law of error estimation is proven to be assimptoticaly 
one. The full state information was considered 
available. 
 
Other contributions of the paper are: 1) illustrating 
how the main theory can be brought or adapted to 
design practice as defined by a given mathematical 
model and showing that the backstepping controllers 
are able to work with a complex plant such as EHS; 
2) CLFs synthesis by using of Barbalat's Lemma; 
3) developing the idea of partitioning the state system 
into two subsystems: a first one stable, and a second 
one taken as framework of control synthesis 
 
The simulation studies attest good tracking 
performance in the presence of step signals. 
Furthermore, a close correspondence between the 
theoretical predictions and the experimental result 
(Ursu, 1984) has been found. 
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