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Abstract: The Kalman filter is the optimal linear least-mean-squares-estimator for 
systems that are described by linear state-space Markov models. In this note, we show 
how to design robust filters that ensure a minimum bounded error variance for models 
with mixed stochastic and deterministic uncertainties, as well as with time delays and 
nonlinearities. We also show how to design filters that simultaneously guarantee an 
exponential rate of decay and meet a robust performance level. 
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1. INTRODUCTION 
 
The Kalman filter is the optimal linear least-mean-
squares-estimator for systems that are described by 
linear state-space Markov models. 
However, when the model is not accurately known, 
the performance of the filter can deteriorate 
appreciably. In this note, we show how to design 
robust filters that ensure a minimum bounded error 
variance for models with mixed stochastic and 
deterministic  uncertainties, as well as with time 
delays and nonlinearities. We also show how to 
design filters that simultaneously guarantee an 
exponential rate of decay and meet a robust 
performance level. Thus, consider the following n-
dimensional state-space model: 
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where  are uncorrelated zero-mean random 
variables with unknown but bounded covariance 
matrices, say 
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iniţial state  is also a zero-mean random variable 
that is uncorrelated with {  for all k. The state 
matrices , and the output matrix C, are 
unknown but lie inside a convex polytopic set. That 
is , where K is a convex bounded 

polyhedral domain described by p vertices as 
follows: 
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Note that although the matrices {  are constant, 
the coefficient matrix in (1) is time variant due to the 
presence of the uncertainties .  These 
uncertainties are assumed to be random in nature and 
are modelled as 
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known matrices, while k∆  is a random matrix whose 
entries have zero mean and are uncorrelated with 
each other. 
 
The variances of the entries of ∆  are assumed 
unknown but bounded by 
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function )(⋅f in (1) accounts for unmodeled 
nonlinearities and it is assumed to satisfy 

,kUx)(kf ≤  for some matrix U. Observe that 
model (1) and (2) incorporates both stochastic and 
deterministic uncertainties (due to the presence of 

kA∆ ), and deterministic uncertainties (represented by 
the polyhedral domain K). In this note, we investigate 
the design of linear estimator for {  of the form }x , kk z
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where the constant matrices {  are filters 
parameters to be determined in order to meet certain 
performance criteria, including robustness, 
exponential stability, and bounded state error 
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variance. In (4) the notation  and   denote the 
estimates of  and , respectively, that are based 
on  Let 
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error vector. It follows from (1) and (4) that the 
extended state vector }ˆ

kxcol= ,{ kxkη  satisfies 
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while the output error is given by 

fk Lz  and where we are 
defining the extended quantities 
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Definition 1 [Stability With Probability 1]:  The 
stochastic process  η  of (5) will be said to be stable 
with probability 1 if and only if, for any 0>δ  and 
ε , there exists a  such that if 

0η , then δ≤ . If 

δη ≥[sup kP  holds for all 0η , then we say that 
the systems is stable at large. 
 
Definition 2 [Asymptotic Stability ]: The stochastic 
process kη  of (5) will be said to be asymptotically 
stable with probability 1 if and only if it is stable at 
large and 0→  with probability 1as ∞→k  

for any 0η . 
Definition 3 [Exponential Stability]: The stochastic 
process kη  of (5) will be said to be exponentially 
stable with lavel 10 <  , if there are real numbers 

0>µ , and 0 such that  
for any 0η .  
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Our objective is to determine filter parameters 

in (4) such that for all admissible 
uncertainties in the model (1), (2), the augmented (5) 
is asymptotically stable in the absence of noises and, 
when noises are present, the state estimation error  

},,{ fff LBA

kx  is exponentially stable, independent of the 
unknown time-delay τ . 

2. ASYMPTOTIC STABILITY 
 
Assume that the noise  is absent from (5) so that 
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Introduce the vector .  We 
shall seek a Lyapunov Krasovskii V(.) of the form 
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)( , for some positive-
definite matrices P and R to be chosen. Assume, for 
the moment, that the triplet  in (1) and (2) 
is fixed, i.e, ignore the polytopic set (3).  
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Theorem 1 (Asymptotic Stability): Given scalars 

, and 0,0 21 >> εε 10 <<α , if there exist matrices 
 and a scalar },0>R,0,,{ >PBA ff ,0>β  such that 
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and , then the process {UMU = }kη  of (5), with 
fixed ,  will be asymptotically stable in the 
absence of noise for this choice of { . 
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Now, it is a well-known result [17] that for any real 
matrices {X,Y,Z} with  IJJ T µ≤ , it holds for any 
scalars 0>ε   that  

YYXXXJYXJY TTTTT εµε +≤+ −1 . 

From (7), we have . Choosing , we 
can write 
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for some  and, moreover,  0,0 21 >> εε
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From (8), we get 
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which implies that the process {φ , and 

consequently }{ kη , is asymptotically stable. Now, 
assume that we restrict our choice of P to block 
diagonal positive-definite matrices, and partition 
{P,R} in conformity with kη , and define Q  and , 
respectively, as 
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The second inequality in (11) guarantees 

 while (12) guarantees 

.  These inequalities do not require 
the 
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(.)maxλ operations for H and S and, therefore, they 
are linear inequalities in the unknowns. 

3. EXPONENTIAL PERFORMANCE 
 
We now show that the process 

kη is also 
exponentially mean square-stable, as well as almost 
surely stable in norm. To begin with, in the presence 
of measurement and process noises, and with 

chosen from the feasible solution of (7) and  
(11)-(13), we obtain the following inequality by 
repeating the argument of Theorem 1: 
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Inequality (18) allows us to establish that the process 
}{ kη is exponentially mean-square stable. In order to 

arrive at this conclusion, we call upon the following 
auxiliary results. 
 
Lemma 1: If there exist positive real numbers 
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Proof: This result is a combination of Lemma 3 and 
[19, Th. 2]  
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probability 1 and, moreover, )( kEV φ  remains 
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Proof : See[20]. 
 
Theorem  2 (Exponential Stability) :  Given scalars 

 and ,0,0 21 >> εε 10 <<α , let 
},,,, 21321,,,,{ 21 σσRRRPPBA ff  be a solution to (7) 

and (11)-(13) with I>Γ . Then the resulting process 
},{ kk ηφ  are exponentially stable in the presence of 

measurement and process noises and for fixed 
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Moreover, the variance of kφ is bounded as follows: 
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Proof : The result follows from (17), (18), and 
Lemmas 1 and 2. 
 
Remark: Apart from the above result, we can also 
show almost sure exponential stability of (5) in norm 
in the absence of noises. Using Chebychev’s, in the 
absence of noises, we have:  
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Now, from the Borel Cantelli [21], we conclude that 
the event ))(/1( 4/
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infinitely often, i.e, 
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4. POLITOPIC UNCERTAINTIES 

We can now incorporate  are not fixed but 
lie within the polytopic set K defined by (3). 
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Theorem  3 (Exponentially-Stable Filter) : Given 
scalars ,01 >ε ,02 >ε 03 >ε  
and 10 <<α , any filter defined by the matrices  
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i)  is bounded as stated in Theorem 2; 
ii) exponential and asymptotic stability of (5) for all 

admisible parameters  ( . ,Ad

Proof : These properties follow from the definition 
 and , and from the fact that the inequalities 

(7), (11), and (12) are linear in . 
Q

The result (24) from Thm. 2 further suggests that we 
can minimize an upper bound on the error variance, 

E , by seeking filter coeffficients { that 

minimize the following function over the variables  
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subject to conditions (7) and (11)-(13) and .Γ<Ι  
The last term in the previous cost function is 
nonlinear in . We can instead solve the 
following convex optimization problem over the 
variables { ,, 1σ :   
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subject to condition (7) and (11)-(13) and  
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This last condition enforces a bound Λ<fB . 
Note that since , (7): can be enforced by the 
inequality 
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5. ROBUST PERFORMANCE 
 
In this section, we shall further assume that 
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Definition 4 [Robust Performance]: The error system 
(5) will be said to have a robust performance of level 
γ  if for all nonzero u , as in (32), it holds for 
some 
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Observe that contrary to a standard , we use the 
expectation operator on both sides of the above 
inequality in order to account for the presence of 
stochastic uncertainties. In addition to asymptotic and 
exponential stability, we can enforce a robust 



performance level by requiring (P,R) to satisfy, along 
with the feasibility conditions (7) and (11)-(13) with 
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for some given 0>γ .Indeed, if we sum (33) over k, 
and noting that the error system is exponentially 
mean-square stable, we get 
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methodology as in Section 2, we can verify that (33) 
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Theorem 4 (robust Performance): Given scalars  

,0,0 32 >> εε and  
,1  let { be a solution to 

the linear matrix inequalities (7), (11)-(13), (35), and 
(36), with 

},,,,,, 32121 RRRPPBA ff

I>Γ . Then the error system (5) is 
exponentially stable and has a robust performance 
level of γ  for fixed . ),,( CAA d

  
 

6. DELAYLESS SYSTEMS 
 
If we assume a delayless system, i.e. we set 0=dA  in 
(1), and if we drop the robustness requirement of 
Section 5, we can enforce a tighter upper bound on 

the variance of the error, 
2~

xE . Thus, consider the 

system   
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Then, we have the following result. 
Theorem 5 (Exponential Stability):  Given scalars 

,0,0 21 >> εε and 0 ,1<<α   let 
 { },,,,, 2121 σσPPBA ff  be a solution to the following 
inequalities : 
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Then, the resulting process { }kη  is exponentially 
stable in the presence of measurement and process 
noises. Moreover, its variance is bounded as follows: 
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7. SIMULATIONS 
 

To illustrate the multi-objective filter developed for 
state-delayed systems, we choose an implementation 
of order 2 for a nonlinear uncertain stochastic system 
(1) as follows: 
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 The delay τ  in the example is chosen as 4. 
The values of 1ε  and 2ε  are chosen as 1.1. The value 
of β  is 1. The robustness level is 8=γ . The 



performance of the filter is illustrated in Fig. 1(a),  
wich shows its tracking capability. 

To illustrate the robust minimum variance 
filter developed in Section VI  for delayless systems, 
we choose the following model:  
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Fig. 1(b) compares the mean-square-error 
2^

kxE  in  

db when the actual state matrix is , for both the 
Kalman filter operating at the centroid of the 
polytopic region and the robust filter. The noise 
variances are equal to 1. 

3A

 
 

 

 
Fig. 1. Performance of the robust filters. a) Tracking 

performance of the multiobjective robust filter of 
Theorem 3. b) Mean square error behavior of the 
Kalman filter and the robust filter for delayless 
systems of  Theorem 5. 

 

8. CONCLUSION 
 
In this note, we developed a multi-objective robust 
state estimator for uncertain discrete time state-delay 
systems with mixed deterministic and stochastic 
uncertainties. The design guarantees almost sure 
bounded error variance with exponential stability and 
robust performance. 
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