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Abstract: The Kalman filter is the optimal linear least-mean-squares-estimator for
systems that are described by linear state-space Markov models. In this note, we show
how to design robust filters that ensure a minimum bounded error variance for models
with mixed stochastic and deterministic uncertainties, as well as with time delays and
nonlinearities. We also show how to design filters that simultaneously guarantee an
exponential rate of decay and meet a robust performance level.
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1. INTRODUCTION

The Kalman filter is the optimal linear least-mean-
squares-estimator for systems that are described by
linear state-space Markov models.

However, when the model is not accurately known,
the performance of the filter can deteriorate
appreciably. In this note, we show how to design
robust filters that ensure a minimum bounded error
variance for models with mixed stochastic and
deterministic  uncertainties, as well as with time
delays and nonlinearities. We also show how to
design filters that simultaneously guarantee an
exponential rate of decay and meet a robust
performance level. Thus, consider the following »-
dimensional state-space model:

xkﬂ :(A+AAA)xk +A(lxkfr +BMA +Df(xk) (l)

y, =Cx +v, @)

z, =Lx, k>0
where {u,,V,} are uncorrelated zero-mean random
variables with unknown but bounded covariance
matrices, say FEuu <pl and Evyv. <pl. The
initial state X, is also a zero-mean random variable
that is uncorrelated with {u, ,v } for all k. The state
matrices {4,4,}, and the output matrix C, are

unknown but lie inside a convex polytopic set. That
is (4,4,,C)e K, where K is a convex bounded

polyhedral domain described by p vertices as
follows:

K={(4,4,0)=Ya(4,4,C), a>0, Ya =11. (3

Note that although the matrices {4, 4,} are constant,
the coefficient matrix in (7) is time variant due to the
presence of the uncertainties A4, . These
uncertainties are assumed to be random in nature and
are modelled as A4, = EA,G where E and G are
known matrices, while A, is a random matrix whose

entries have zero mean and are uncorrelated with
each other.

The variances of the entries of A, are assumed
unknown but bounded by p,, EAA <p . The

function f()in (1) accounts for unmodeled

nonlinearities and it is assumed to satisfy
|| f (k)"S"ka", for some matrix U. Observe that

model (1) and (2) incorporates both stochastic and
deterministic uncertainties (due to the presence of
A4, ), and deterministic uncertainties (represented by
the polyhedral domain K). In this note, we investigate
the design of linear estimator for {x,,z,} of the form

X, =A% +By £ =L3%.k20 4)

Sk
where the constant matrices {4,,B,,L } are filters
parameters to be determined in order to meet certain

performance  criteria,  including  robustness,
exponential stability, and bounded state error



variance. In (4) the notation X, and Z denote the
estimates of x, and z, , respectively, that are based
on {y,y,..y. }. Let X =x —x_, denote the state
error vector. It follows from (1) and (4) that the
extended state vector 7, = col{x ,x } satisfies

., =(A+ A Ay +Bw, + Ay, +D,(Mn) (5
while the output error s
zo=z,—-2 =[L-LL]n

defining the extended quantities

X, w - - —
=1+ | w, = * N AAk:EAkG
Xk Vi

- (E }
E:[Ej G=(G 0) M= 0

given by
and where we are

4, 0
. 4 0
A:

A-A4 -BC A4,
(B0
B:

B -B

Definition 1 [Stability With Probability 1]: The
stochastic process 77, of (5) will be said to be stable

with probability 1 if and only if, for any ¢ >0 and
>0, there exists a o(d,6)>0 such that if

||77n || <o(d,e), then P[sup"?]k” >¢]l<o. If
P[sup"m || > ¢]< 0 holds for all 7,, then we say that

the systems is stable at large.

Definition 2 [Asymptotic Stability ]: The stochastic
process 77, of (5) will be said to be asymptotically
stable with probability 1 if and only if it is stable at
large and ||77k ” — 0 with probability las k —» o©

for any 7, .
Definition 3 [Exponential Stability]: The stochastic
process 77, of (5) will be said to be exponentially

stable with lavel 0 <¢ <1 , if there are real numbers

4#>0, and v>0such that E||77k ||2 < ,u||770||2g" +v
for any 7,

Our objective is to determine filter parameters
{4,B,,L }in (4) such that for all admissible

uncertainties in the model (1), (2), the augmented (5)
is asymptotically stable in the absence of noises and,
when noises are present, the state estimation error
x: 1s exponentially stable, independent of the
unknown time-delay 7 .

2. ASYMPTOTIC STABILITY

Assume that the noise w, is absent from (5) so that

., =(A+A A + Ay, +D,(Mn,) k=0, (6)

Introduce the vector ¢, =[n,,n. ,....,n_1 . We
shall seek a Lyapunov Krasovskii V(.) of the form
V(g)=n/Pn, + Z:l n'Rn, for some positive-
definite matrices P and R to be chosen. Assume, for
the moment, that the triplet (4,4,,C) in (1) and (2)
is fixed, i.e, ignore the polytopic set (3).

Theorem 1 (Asymptotic Stability): Given scalars

>0, ¢>0,and 0<a<l, if there exist matrices
{4,,B,,P>0,R >0}, and a scalar >0, such that

- T

74 A
Z >0 (7
A 1
and
s H -4 PA,
w= L (8)
- A.PA R-pe'I-A.PA
where

H=P-R-p,G E PEG-A PA-1_

(D PD)U U- &'l — (¢, +¢&)A_ (D P°D)U U
and U=UM , then the process {n,} of (5), with
fixed (4,4,,C), will be asymptotically stable in the

absence of noise for this choice of {4 ,B,} .
Proof: Note that

E[V(¢A+l)|¢k5¢D]_V(¢/)S77Al APA’Z( _’7ZP77,
+pn G E PEGn,+n A PAsy,

+n, A PAn, +5] A PD f(Mn,) ©9)

+/'(Mn)D PAn +["(Mn)D PD f(Mn,)
+f"(Mn)D PAsn,_ +n Ry, —n Ry,..

Now, it is a well-known result [17] that for any real
matrices {X,Y,Z} with JJ" < ul, it holds for any

scalars & >0 that
XIY+Y'J' X <e'uXX"+&Y'Y .

From (7), we have ,;lr A< I . Choosing J = z;lr, we
can write
n A PDf(Mn)+ [ (My)D PAn, <
e nin+e A (D P DU U,
Similarly
W A PDf(Mn)+ [ (Mn)D PAn, <

pe nm . +e A (D PDy U Un,.



for some ¢, >0, &, >0 and, moreover,

f"Mn)D PDf(Mn)<4,(D PDp U Un,.
Then, we have

E[V(¢I<+l ) | ¢/( > ¢k7| 9""¢o ] - V(¢/( ) <
T T T T ! (10)
- {m M- }W{m - } :
From (8), we get

EV (8,0 borBersth 1=V (@) < —afn [ <0
which

consequently {77, }, is asymptotically stable. Now,

implies that the process {4}, and

assume that we restrict our choice of P to block
diagonal positive-definite matrices, and partition

{P,R} in conformity with 77, , and define Q, and Q,,

respectively, as
P 0 R
P = R =
0 P R R,

We can see that the requirement (8) is satisfied if

ol DP DP

Q=4P 0 =BP

Rl R'&
>0 |PD P 0 |>0 (11

R R
PD 0 P

PD I 0 |>0 (12)

S—ol =R J 0 AP J 0 0
-R' P-pg'l-ad —QA, 0 O 0
J —AQ R-pe'l R 00 AP

0 0 R R-ad-fe'l 00
' >0 (13)
P4 0 0 0 P 0 0 0
J 0 0 0 P 0 0
0 0 P4 0O 0 0PO
0 0 P4 0 0 00P
where

S =P-p,G'E'(PL+PEG)-R -
(o, +(g, +¢&,)o ) U'U-pe'l

J==C'Q.-Q+AP (14)
J=—A"(P+P)A,+C' Q.4 +QA, (15)
The second inequality in (11) guarantees
.. (D PD) <o, while (12) guarantees

.. (D P'D)< o,. These inequalities do not require
the A_ (.) operations for H and S and, therefore, they
are linear inequalities in the unknowns.

3. EXPONENTIAL PERFORMANCE

We now show that the process 7is also

exponentially mean square-stable, as well as almost
surely stable in norm. To begin with, in the presence
of measurement and process noises, and with
{4,,B,} chosen from the feasible solution of (7) and

(11)-(13), we obtain the following inequality by
repeating the argument of Theorem 1:

E[V(¢k+l) | ¢k9¢k—l""‘¢o] - V(¢A ) S
_ a"m ||Z +pTr(B (P +P)B)+ pTr(B'PB,)

Now, note that V' (¢,) = ¢/ T ¢, , where

I =diag{P,R,.......R} .
It follows that

EV(@.)9:8. - 81-V($) < 16
~w V(@) +pTr(B"(F+P)B)+ pTr(B/PB)

where v, =(a|| / A..(D)|@|). If (PR} are further

chosen such that I'>7, then O<y, <1-6, for

some 6 > 0.
Consequently
4C)
E[V s P e | ———= <,
CRIVICAVAEES. -
Tr(B"(P+P)B)+ pTr(B/P.B,)
where O =inf (1/1-y,). Let w=sup,y,. Then,
O<w<l1 and
EV ()00 5 p 1=V (D) <=9V (5,) + (18)

p.Tr(B'(P +P)B)+ pTr(B/PB)
Inequality (18) allows us to establish that the process
{n.}is exponentially mean-square stable. In order to

arrive at this conclusion, we call upon the following
auxiliary results.

Lemma 1: If there exist positive real numbers
A, u,v, and 0 <y <1 such that
| <vgo=v

2

9, (19)

and
EV(P.)0..9 01V ()< A-yV(d) (20)

then the process ¢, is exponentially stable. Moreover,
it holds that

s <L E|g,
Y7,

Proof: This result is a combination of Lemma 3 and
[19, Th. 2]

A

E A-p) +2— 1)
uy

Lemma 2: If V (¢, ) satisfies

BV @) b -T2 L0 22)

for some 6 >0, L>0, then V(g4,) is bounded with
EV(4,)

probability 1 and, moreover, remains

bounded for all £ with



EV ()] <—7=
Proof : See[20].

(¢) o [ 1
NEE T

Theorem 2 (Exponential Stability) : Given scalars

>0, &>0, and O<a<l, let
i4,,B,,P,P,,R,R,,R,,0,,0,} be a solution to (7)
and (11)-(13) with I" >/ . Then the resulting process
{¢,,m, } are exponentially stable in the presence of

measurement and process noises and for fixed
(4,4, and C).
Moreover, the variance of ¢, is bounded as follows:

) 1 (V(g,) 0 .
Al <P a- ) e

where
L=p,Tr(B" (P, + P,)B)+ p,Tr(B]P,B,).  (25)

Proof: The result follows from (17), (18), and
Lemmas 1 and 2.

Remark: Apart from the above result, we can also
show almost sure exponential stability of (5) in norm
in the absence of noises. Using Chebychev’s, in the
absence of noises, we have:

Pl > ——|< 26)
4, @D)o"
Summing over &, we get:
> P o> ——= e* <L L0 L)
27
<l (F))ZVZ’) (A (r))lmﬁ)

1-—
%

Now, from the Borel Cantelli [21], we conclude that
the event ||g[>(1/4,,([)6"")

infinitely often, i.e,

mu{u¢ > } P
A (D)0

Then, it holds that |4,|> (1/4,,(I6"") as desired.

cannot occur

4. POLITOPIC UNCERTAINTIES

We can now incorporate (A4,4,,C) are not fixed but

lie within the polytopic set K defined by (3).
Theorem 3 (Exponentially-Stable Filter) : Given
scalars ¢ >0, €, >0, & >0

and 0 < <1, any filter defined by the matrices

A =(QP") and B, =(Q.P") (29)

where 0,0,,P,
solution of the matrix inequalities (7) and (11)-(13)

>, and L are obtained from a feasible

for all 4 taking values in [4....4 ], 4,
...... 4,],and  C

in[C.....C ], ensures the following :

taking

values in [4 taking  values

i) E||¢A || is bounded as stated in Theorem 2;
i) exponential and asymptotic stability of (5) for all

admisible parameters (4,4,,C).

Proof : These properties follow from the definition
O and Q,, and from the fact that the inequalities
(7), (11), and (12) are linear in (A4,4,,C).

The result (24) from Thm. 2 further suggests that we
can minimize an upper bound on the error variance,

2

, by seeking filter coeffficients {4, ,B } that
minimize the following function over the variables
{A/ 9B,=P1=P13Rao-uo-zaﬂ} :
pIr(B'(R+P)B)+ pTr(B/FB))
subject to conditions (7) and (11)-(13) and I<T.

The last term in the previous cost function is
nonlinear in (B,,P). We can instead solve the

following convex optimization problem over the
variables {4,B,,FP,P,R,A,c,,0,,B}:

min7r{p B" (P + P)B+ p A} (30)
subject to condition (7) and (11)-(13) and
A
0 >0, with ' > 1.
o P
This last condition enforces a bound B/PB, <A.

Note that since P> 1, (7): can be enforced by the
inequality

Bl OAPJ

0400

> 0. 31)
PAOPO

JQOP

5. ROBUST PERFORMANCE

In this section, we shall further assume that

Ei”f% <o Ei:v""vA <o, (32)

Definition 4 [Robust Performance]: The error system
(5) will be said to have a robust performance of level
y >0 if for all nonzero u,, v,, as in (32), it holds for

some y >0 that

{Zz/ z}<;( +)/2E{Zuu +vv}

Observe that contrary to a standard H_, we use the

us

expectation operator on both sides of the above
inequality in order to account for the presence of
stochastic uncertainties. In addition to asymptotic and
exponential stability, we can enforce a robust



performance level by requiring (P,R) to satisfy, along
with the feasibility conditions (7) and (11)-(13) with
I' > I the following requirement:

EV(.)— EV($)—y*E(u/u, +v'v,)+ Ez z. <0 (33)
for some given y >0 .Indeed, if we sum (33) over £,

and noting that the error system is exponentially
mean-square stable, we get

E{Zz é} <EV($)+ j/E{Zuu + v:vk} (34)
which is consistent with criterion (33). Now, if f
also satisfies

4
é >0 (35)
A I

or, in other words, if B B < fI, then using the same

methodology as in Section 2, we can verify that (33)
is satisfied if (36), holds true for any given &, >0,

S-R 000 0 APJL —-L
R P-R-f7000000Q L
00R-fe' R 00 AP APO
00R R-p'70 0 0 0 0
0000y 7-pe' 0 B'P BPO
00 0 00y I-ps' 0-0,0

PA 0 PA O PB OP 0

>0 (36)

0
J Q P4, 0PB-Q 0PO

L-L L0 O0OO0O0O0O0 I
where

S=P-p,G'E'(P+P)EG-R ~
Pe'l— (o, + (e +¢,+¢&)o,)U'U.

Theorem 4 (robust Performance): Given scalars
£ >0,&>0,¢ >0,and

O<a<l, let {4,B,,P,P,R,R, R }be a solution to
the linear matrix inequalities (7), (11)-(13), (35), and
(36), with I'>7. Then the error system (5) is
exponentially stable and has a robust performance
level of y for fixed (4,4,,C).

6. DELAYLESS SYSTEMS

If we assume a delayless system, i.e. we set 4, =0 in
(1), and if we drop the robustness requirement of
Section 5, we can enforce a tighter upper bound on

x| . Thus, consider the

the variance of the error, E
system
X, =(A+AA)x, +Bu + Df (x,) (37)
y,=Cx +v,. (38)

Then, we have the following result.
Theorem 5 (Exponential Stability): Given scalars
g>0,¢>0,and O<a<l, let

{4,,B,,P,P,0,,0,} be a solution to the following

inequalities :
r cIDPDP
A Ao, |pDPoO >0 (39)
A 1 PDOP
oIDP D'P
PDPO >0 (40)
PDOP,
S 0[AP J
0P —-c'fl—-al|0Q
—————————————— >0 (41)
PAO|P 0
J' O/ |0P

with P>1, where
S=P—al - p.G'E'(P +P)EG - fe"I.
Then, the resulting process {7} is exponentially

stable in the presence of measurement and process
noises. Moreover, its variance is bounded as follows:

. 1 V@) 6 . 1
Eln, “Tote tealg) @

where
L=pIr(B'(R+P)B)+pTr(B/PB)  (43)

and  9=()/(1-y) cuy=@/A,(P).

7. SIMULATIONS

To illustrate the multi-objective filter developed for
state-delayed systems, we choose an implementation
of order 2 for a nonlinear uncertain stochastic system
(1) as follows:

0.62 0 0.5 -1 0.541
A= A4 = A =
00.61 0.2 0.5 0 0.56
10 020 0.2 0.10
C = C= B= D=
01 00 0.2 00.1
0.121 0.10.1 0.01 0.02
A’ = G= E =
‘ (0.31 O.lj (0.1 O.IJ (0.01 0.0ZJ
xl/\+l xlk xl/*?‘
[ ’ J=(A+Mk)( ‘ J+Ad[ : j+BwA
x2.ﬂ+l xZ.A x'.’,/wr
0.1sin(x,,) X,
D o y,=C 7 |[+v,.
0.1sin(x,,) X,
The delay 7 in the example is chosen as 4.

The values of ¢, and ¢, are chosen as /./. The value
of f is 1. The robustness level is y=8. The



performance of the filter is illustrated in Fig. I(a),
wich shows its tracking capability.

To illustrate the robust minimum variance
filter developed in Section VI for delayless systems,
we choose the following model:

0.62 0 0.5 -1 0.54 1
4= A4, = A=
0 0.61 0.20.5 00.56
100 0 90 0 -6
C] = sz B =
5010 5010 1
0.10 0.10.2
E=
00.1 0.10.2
le xl k xller
xZ.A+1 xZ.k xZ,I\*f
0.1sin(x,,)
0.1sin(x, )

D

+Bw, + D(

a 2
Fig. 1(b) compares the mean-square-error FElx:|| in

db when the actual state matrix is A3, for both the

Kalman filter operating at the centroid of the
polytopic region and the robust filter. The noise
variances are equal to 1.

| 1 [D'd!'l'. fi il"‘?\,‘ ;
a4 L TR L A LR
Vit 4l
Y ‘Ir.u !}( : Ifﬁl .r\' 1y ,'f i

Maan Squars Error dE]

Fig. 1. Performance of the robust filters. a) Tracking
performance of the multiobjective robust filter of
Theorem 3. b) Mean square error behavior of the
Kalman filter and the robust filter for delayless
systems of Theorem 5.

8. CONCLUSION

In this note, we developed a multi-objective robust
state estimator for uncertain discrete time state-delay
systems with mixed deterministic and stochastic
uncertainties. The design guarantees almost sure
bounded error variance with exponential stability and
robust performance.
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