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Abstract: Nonlinear adaptive filtering techniques are widely used for the nonlinearities 
identification in manny applications. This paper investigates the performances of the 
Volterra estimator by considering a nonlinear system identification application. The 
Volterra estimator parameters are compared  with those of a linear estimator. For the 
nonlinear estimator, based on a second order RLS Volterra filter, a new implementation 
is proposed. The experimental results show that the proposed Volterra identifier has 
better performances than the linear one. Different degrees of nonlinearity for the 
nonlinear system are considered.  
Keywords: Recursive least squares algorithm, nonlinear estimator, linear estimator, 
Volterra filter. 

 
 
 

 
1. INTRODUCTION 

 
Detection, representation and identification of 
nonlinearities in different telecommunication systems 
represent important tasks in many applications and 
had a major contribution to the development of the 
main nonlinear modeling techniques. The current 
trend in the telecommunication systems design is the 
identification and compensation of unwanted 
nonlinearities. It was demonstrated that unwanted 
nonlinearities in the system will have a determinant 
effect on his performance (Tsimbinos, 1995). There 
are various ways of reducing the effects of undesired 
nonlinearities (Stenger, 2000 a,b; Küch, 2002 ). The 
use of nonlinear models considered in this paper to 
characterize and compensate harmful nonlinearities 
offer a possible solution. The Volterra series have 
been widely applied as nonlinear system modeling 
technique with considerable success. However, at 
present, none general method exists to calculate the 
Volterra kernels for nonlinear systems, although they 
can be calculated for systems whose order is known 
and finite. When the nonlinear system order is 
unknown, adaptive methods and algorithms are 
widely used for the Volterra kernel estimation. The 
accuracy of the Volterra kernels will determine the 
accuracy of the system model and the accuracy of the 
inverse system used for compensation. The speed of 

kernel estimation process is also important. A fast 
kernel estimation method may allow the user to 
construct a higher order model that give an even 
better system representation. 
This paper investigates the performances of the 
Volterra estimator by considering a nonlinear system 
identification application. The Volterra estimator 
parameters are compared with those of a linear 
estimator. The nonlinear estimator is based on a 
second order RLS Volterra filter. 
A new implementation of the second order RLS 
Volterra filter based on the extended input vector and 
on the extended filter coefficients vector is also 
proposed. Due to the linearity of the input-output 
relation of the Volterra model with respect to filter 
coefficients, the implementation of the RLS 
algorithm was realized as an extension of the RLS 
algorithm for linear filters. 
 

2. THE VOLTERRA MODEL 
 
This section will discuss some important aspects of 
the second order Volterra model. For a discrete-time 
and causal nonlinear system with memory, with input 
x[n] and output y[n], the Volterra series expansion is 
given by (Schetzen, 1980) : 
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where N represent the model nonlinearity degree. 
Choosing 2=N , the input-output relationship of the 
second order Volterra filter (FV2 ) can be expressed 
as: 
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The input-output relation can also be written in terms 
of nonlinear operators as indicated in relation (3). 
 

[ ] [ ][ ] [ ][ ] [ ][ ]nxHnxHnxHny 210 ++=  (3) 
 

 
In the above representations, the functions 

2,0, =ihi  represent the kernels associated to the 
nonlinear operators [ ][ ]nxH i .  
The nonlinear model described by the relations (2) 
and (3) is called a second order Volterra model. Note 
that the above representations has the same memory 
for all nonlinearity orders. In the most general case 
the relation (1) may used different memory for each 
nonlinearity order. A further simplification can be 
made to relation (1) by considering symmetric 
Volterra kernels. 
The kernel ],[ 1 ii kkh Λ  is symmetric if the indices 
can be interchanged without affecting its value. The 
second order Volterra kernel is a (M×M) matrix. If 
we consider symmetric kernels of memory M, the 
second order Volterra kernel requires the 
determination of M(M+1)/2 coefficients as indicated 
in relation (4). 
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The kernel estimation accuracy becomes the major 
problem in the practical applications. It was shown 
that the Volterra operators are homogeneous and 
generally not orthogonal. As a consequence of this 
last characteristic the Volterra kernels can not be 
measured using the cross correlation techniques and 
the values of the Volterra kernels will depend on the 
order of the Volterra representation being used. If the 
order of the Volterra model is changed the Volterra 
kernels will change and they must be recalculated 
(Schetzen, 1980; Budura and Nafornita 2002; Budura 
and Botoca, 2002a). However, for an input having a 
symmetric amplitude density function, such as the 
Gaussian noise, the odd order Volterra functionals 
are orthogonal to the even order Volterra functionals. 
It follows that for this type of input, a 2nd order 
Volterra model, with zero DC component, is an 

orthogonal model (Budura and Botoca, 2005). This 
leads to direct Volterra kernel measurement by the 
cross-correlation methods.  
In practical situations when confronted with system 
which parameters are time varying, adaptive methods 
for kernels estimation are widely used. Due to the 
linearity of the input-output relation according to the 
kernels, or filter coefficients, the application of 
adaptive algorithms for the Volterra filters 
implementation is quite simple. The nonlinearity is 
reflected only by multiple products between the 
delayed versions of the input signal.  
The nonlinear estimator proposed in the article is 
based on a second order Volterra filter (FV2) 
descriebed by relation (2)-(4) and considering 

00 =h . The filter structure is indicated in Fig.1. 
 

 
Fig. 1. The second order Volterra filter structure  
 
Next we will introduce the input vectors 
corresponding to different orders kernels. The first 
order input vector is defined as follows: 
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„The second order input vector” can be expressed by: 
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When we deal with symmetric Volterra kernels only  
M(M+1)/2 elements of the MxM matrix indicated in 
relation (6) are used in the input output relation (2). 
Based on this observation we introduced the 
extended input vector for the second order Volterra 
filter as indicated in relation (7): 
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and the extended filter coefficients vector according 
to (8). 
 

[ ]1112010010 −−−−−= MMMMM hhhhhhH ΛΛ  (8) 
 

3. RLS VOLTERRA ESTIMATOR 
 
Adaptive methods and algorithms are widely used for 
the purpose of kernel estimation. A Volterra filter of 

   h2[k1,k2] 

  h1[k1] 

+ 
x[n] yV[n] 

FV2 



fixed order and fixed memory adapts to the unknown 
nonlinear system using one of the various adaptive 
algorithms. The use of adaptive techniques for 
Volterra kernel estimation has been well published. 
Most of the previous work considers 2nd order 
Volterra filters and some consider the 3rd order case. 
A simple and commonly used algorithm uses an 
LMS adaptation criterion (Mathews, 1991; Budura 
and Botoca, 2002b; Budura and Botoca 2004). 
Adaptive Volterra filters based on the LMS 
adaptation algorithm are computational simple but 
suffer from slow and input signal dependent 
convergence behavior and hence are not useful in 
many applications. The aim of this section is to 
discuss the efficient implementation of the RLS 
adaptive algorithm on a second order Volterra filter. 
As in the linear case the adaptive nonlinear system 
minimizes the following cost function at each time: 
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where ( )nH and ( )nX  are the coefficients and the 
input signal vectors, respectively, as defined in (8) 
and (7), λ is a factor that controls the memory span of 
the adaptive filter and ( )ky represents the desired 
output. The solution of equation (8) can be obtained 
recursively using the RLS algorithm.  
Based on the second order Volterra filter presented in 
Section 2 we have implemented the RLS  nonlinear 
estimator. The filter coefficients are adapted 
according to the following steps: 
 
I. Initialization: 

 
-define the filter memory(length for H(n) and 
X(n)); 
 

       ( ) [ ]0000 Λ=H ; 
 
 ( ) IC XX *0 δ= ;  
 
 where δ is a small positive constant; 
 

II. Operations: for iterationsofnr.,1=n  
 

1. Create the extended input vector: 
 

        ( )nX ; 
 

2. Compute the error:  
 

 ( ) ( ) ( ) ( )nXnHndnne
'

*11/ −−=− ;   
     

3. Compute the scalar: 
 

 ( ) ( ) ( ) ( )nXnCnXn XX

'
*1* −=µ ;   

 
4. Compute the matrix: 
 

 ( ) ( ) ( ) ( );/1*1
'

µ+λ⎟
⎠
⎞⎜

⎝
⎛ −−= nHnCnG XX  

 
5. Updates the filter vector:    
 

       ( ) ( ) ( ) ( )nGnnenHnH
'

*1/1 −+−= ; 
 

6. Updates the matrix XXC :    
 

( ) ( ) ( ) ( ) ( )( )1**1*
1

−−−λ=
−

nCnXnGnCnC XXXXXX ; 
 
In the relations above XXC  denotes the inverse 
autocorrelation matrix of the extended input signal. 
Inversion was done according to the matrix inversion 
lemma (Morthensen, 1987). 
 

4. EXPERIMENTS AND RESULTS 
 

The RLS Volterra estimator performances were 
studied and compared with the linear estimator 
performances in a typical nonlinear system 
identification application presented in figure 2. 
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Fig. 2. The nonlinear system identification  



The nonlinear system with memory being identified 
is represented in figure 3 and consists of a linear 
filter(FIR2) with impulse response given by: 
 

[ ] 102 1

)1(
−≤≤=

+−
Mnnh

n
 (10) 

 
followed by a nonlinear system without memory 
which input-output relation is: 
 

[ ] [ ] [ ]nbununy
2

+=  (11) 

 
The linear filter memory in relation (10) is M₁=10. 
The coeficient b permits to change the nonlinearity 
degree. 
The input signal x[n] is generated by colouring the 
white Gaussian sequence z[n], with the autoregresive 
filter (FIR1) described by: 
 

[ ] [ ] [ ] [ ]nznxnxnx 5,09,01 +−−=  (12) 
 
Experiments have been done regarding the 
identification of a second order nonlinear system 
with different degrees of nonlinearity.  
 
 

 
 
Fig. 3. The nonlinear system structure 
 
The performance of the RLS adaptive Volterra filter 
was appreciated by comparing the error of the 
nonlinear identifier with the error of a linear 
identifier.  
The same memory M=10 has been chosen for the 
linear and for the second order Volterra kernel 
according to the relation (2). For the linear identifier 
we fixed the same memory. The factor λ was chosen 
equal to 0,995. 
 The simulations have been done in the MATLAB 
software.  
The following degrees of nonlinearity are considered: 
-Nonlinear system identified: b=0,01;  
The error using the RLS Volterra identifier is 
indicated in Fig.4. 

 
Fig.4. The error of the RLS Volterra identifier 

01.0=b  
 
The error using the linear adaptive filter as identifier 
is presented in Fig.5. 

 
Fig.5. The error of the linear identifier 01,0=b  
 
-Nonlinear system identified: b=0,1; 
The error using the RLS Volterra identifier is 
indicated in Fig.6 and the error using the linear 
identifier is depicted in Fig.7. 

 
Fig.6. The error of the RLS Volterra identifier 

1.0=b  
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Fig.7. The error of the RLS linear identifier 1.0=b  
 
-Nonlinear system identified: b=1; 
The error signal using the RLS Volterra identifier is 
indicated in Fig.8 and the error using the linear 
identifier is depicted in Fig.9. 

 
Fig.8. The error of the RLS Volterra identifier 1=b  

 
Fig. 9. The error of the RLS linear identifier 1=b  

 
The mean and the dispersion of the error signals were 
calculated too, in order to characterize the 
performances of both identifiers. The corresponding 
values are indicated in Table 1. As it can be seen the 
nonlinear identifier performances ( eVeVm σ,  ) are 
very good for different nonlinearity degrees, while 
the linear identifier performances ( elelm σ, ,  ) are 
unsatisfactory when the nonlinearity increases. 
 

 

Table 1 The identifiers parameters 
 

b mel σel meV σeV 

0,01 35 ·10−4 65·10-4 6,3·10-5 40·10-4 

0,1 0,03 0,0618 6,5·10-5 41·10-4 

1 0,3531 0,6175 7,5·10-5 0,0042 
 

 
5. CONCLUSIONS 

 

The identification and compensation of unwanted 
nonlinearities are required in manny practical 
application in order to improve  the system 
performances. Usualy this are week nonlinearities 
and can be well represented with the Volterra model.   
This paper investigates the performances of the 
Volterra estimator by considering a nonlinear system 
identification application. The nonlinear identifier is 
based on the RLS Volterra filter. A new 
implementation of the second order RLS Volterra 
filter based on the extended input vector and on the 
extended filter coefficients vector is also proposed. 
Due to the linearity of the input-output relation of the 
Volterra model with respect to filter coefficients, the 
implementation of the RLS algorithm was realized as 
an extension of the RLS algorithm for linear filters. 
For simplicity, there were considered only second 
order nonlinearities, but the proposed technique can 
be extented to higher order nonlinearities. 
 The nonlinear adaptive filter performances were 
evaluated in a typical system identification 
application and compared with the performances of a 
linear identifier. The experimental results showed 
that the RLS Volterra filter performed better than the 
linear filter which performances were inacceptable 
when the nonlinearity degree was increased. 
 The costs of these performances are paid by the 
computational complexity required by the nonlinear 
adaptive Volterra filter implementation . 
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