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Abstract: In the paper we consider an electric drive with a static load torque function of 
speed, in the hypothesis of constant inertia moment and of proportionality between the 
electromagnetic torque and the load current. Using the variational calculus, the optimality 
condition is determined which ensures the least energy losses caused by the load current 
through a Joule effect in the acceleration processes. By the digital simulation of nonlinear 
differential equation (optimality condition) we obtain the extremal trajectory and 
extremal control for the electric drive system.© 
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1. INTRODUCTION 

In the case of drives that work in continuous type 
service (S1) appears the necessity of achieving 
starting and braking processes and in the case of 
those that work in uninterrupted type service with 
periodical change of speed (S8) appears the necessity 
of achieving speed variation. To evaluate these 
processes of acceleration and deceleration, the 
minimum of energy losses may be adopted as a 
quality index, and the solving of this optimisation 
problem can be obtained by using the classical 
variational calculus or Euler – Lagrange algorithm 
and numerical computer.  

 
2. MATHEMATICAL MODEL 

 
Considering an electrical drive with static load torque 
having a constant component, a speed proportional 
component and a squared speed proportional 
component  
 

2
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that, in the hypothesis of neglecting the 
electromagnetic inertia as compared to the 
mechanical inertia,  and a constant moment of inertia, 
this driving system will be described by the general 
motion equation (Boteanu N. and Degeratu P, 2000), 
(Degeratu P. and Boteanu N., 2000) 
 

SM = M + J dω/dt (2) 
 
and by the dependence between speed and 
acceleration (Degeratu P. and Boteanu N., 2000) 
 

ω = ωdt .∫ & (3) 
 
To extend the interpretations and the conclusions as 
well as to restraint the value intervals, relative 
coordinates will be used (Degeratu P. and Boteanu 
N., 2000), (Degeratu P. and Săvulescu N.C., 1997). 
By this way, considering as a reference for time, the 
mechanical time constant  
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and for current, torque and speed their nominal 
values, relative values are obtained   
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resulting for the relative acceleration following 
relation 
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In the hypothesis of proportionality between the 
electromagnetic torque and the load current, the 
equations (1), (2) and (3) in the relative coordinates 
have the forms (Degeratu P. and Săvulescu N.C., 
1997) 
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with the initial and terminal conditions 
 

( ) ( )= = = =1 1 1 2 2 2τ τ , ν τ ν , τ τ , ν τ ν . (10) 
 
that conducts the construction of the structural block 
diagram depicted in fig. 1. 

 
The admissible controls set and the admissible 
trajectories set are considered limited and open sets.  
 

3. OPTIMIZATION CRITERION  
 
The valuation of acceleration and deceleration 
process will be done considering the quality index of 
energy losses minimization caused by the load 
current through Joule effect, during those processes, 
expressed by the integral (Degeratu P. and Săvulescu 
N.C., 1997) 
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In this case, taking into account the general motion 
equation (8), the optimization functional-criterion has 

the expression (Degeratu P. and Săvulescu N.C., 
1997), (Petrov Iu. P., 1961). 
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4. FORMULATION OF OPTIMIZATION 

PROBLEM 
 

The optimization problem consist in determining the 
admissible optimal control function i*(τ) or µ*(τ),
witch is able to transfer the system from the initial 
conditions (τ1, ν(τ1)) to the terminal conditions (τ2,
ν(τ2)), on an the admissible extremal trajectory ν*(τ), 
ensuring the minimum of the optimality criterion 
(Degeratu P. and Boteanu N., 2000). 
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for a fixed value of speed variation, expressed by the 
integral 
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variation that is realized in a given interval of time  
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and satisfying the restrictions 
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In conformity with the principle of reciprocity 
(Petrov Iu. P., 1961), the given formulation is 
equivalent with the formulation through which every 
isoperimetric condition (14) and (15) can become 
optimization criterion (ν2−ν1 = max, τ2-τ1 = min) or a 
linear combination of them. So, it results a linear – 
quadratic optimization problem of isoperimetric 
extremum (Lavrentiev M.A. and Liusternik L.A, 
1955). To solve the issued problem, the primal 
problem of conditional extremum will be reduced to 
a dual problem of unconditional extremum by a 
Lagrange adjoin function based on Lagrange 
multiplier λ0 (Lavrentiev M.A. and Liusternik L.A, 
1955), (Petrov Iu. P., 1961). 
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and by determining the unconditioned extremum 
with the functional  
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Fig.1 Structural block diagram of electric drive 
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on the same extremals as those of the primal problem 
(Lavrentiev M.A. and Liusternik L.A, 1955), (Petrov 
Iu. P., 1961). 
 

5. NECESSARY CONDITION  
OF EXTREMUM 

The necessary condition of extremum is expressed by 
the Euler – Lagrange equation (Lavrentiev M.A. and 
Liusternik L.A, 1955) 
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that leads to the nonlinear differential equation of the 
second order 
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Because the condition of extremum expressed by the 
differential equation (20) does not contains Lagrange 
multiplier λ0, it corresponds to that which might 
result in the case that Euler – Lagrange equation 
would be applied directly for the functional of the 
criterion (13). 
 

6. OPTIMAL SOLUTION  
THROUGH DIGITAL SIMULATION 

 
If  the load static torque has a constant component, a 
speed proportional component and a squared speed 
proportional component  
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the static torque has the expression  
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and the necessary condition of optimality expressed 

by the nonlinear differential equation (20) implies 
some difficulties for an analytical solution. For this 
reason, we use the solving through numerical 
simulation with the aid of the computer on the basis 
of the structural block diagram (fig. 2) as a 
optimisation problem, either bilocal or with arbitrary 
and finite terminal moment (Popescu M.C., 2002).  
Numerical simulation solving as a bilocal 
optimization problem, consist in the introducing into 
the block diagram (fig. 2) the triplet of values that are 
characteristic to the load static torque (µ0, k1 and k2), 
fixing the initial condition of acceleration and the 
variation interval of speed (v(τ1), v(τ2)), after that, is 
determined, the evolution in time of extremal 

trajectory (speed v*(τ), acceleration ( )τν*& , and 

shock ( )τν*&& ), static load torque µs( τ) and optimal 
control function (electromagnetic torque of motor 

( )τµ* ) and load current ( )τ*i ) is determined. In this 
case, a certain interval of time (τ2- τ1) and a certain 
minimal value of the optimality criterion will result, 
corresponding to the initial value of 
acceleration ( )1τν& .
Simulation solving with arbitrary and finite terminal 
moment consists in determining of the time interval 
(dependent of the initial acceleration) necessary to 
the evolution of the system which ensure absolute 
minimum of the optimisation criterium. For this 
reason, for simulation the following steps wild be 
followed: 
- First step: we introduce into the block diagram (fig.  
2) the triplet of values, that on characteristic to the 
static torque (µ0, k1 and k2) and we fix the speed 
variation interval, that is the initial value ν1 and the 
terminal value ν2;
- Second step: introducing different values of the 
initial acceleration ( )1τν& , into a certain value 
interval, through integration up to the terminal value 
of speed, we obtain the graphs of relations 

Fig. 2 Block diagram of simulation in Matlab - Simulink 



(dependences) between the minimum optimization 
criterion Jmin and the initial acceleration ( )1τν& (fig. 3, 
fig. 5)  
 

( )1Jmin = f ν τ ,  & (23) 

and between the terminal moment 2τ and the initial 
acceleration ( )1τν& (fig. 4, fig. 5);  
 

( )2 1τ = f ν τ  & (24) 
 

Fig. 9. Evolution of static torque and optimal control 
(load current, motor torque and dynamic torque) during 

deceleration  (µ0=0.6, k1=0.2, k2=0.2  şi ν& (0)=-1) 

Fig. 8 Evolution of extremal trajectory (speed, 
acceleration and shock) during deceleration 

(µ0=0.6, k1=0.2, k2=0.2, ν& (0)=0.6) 

Fig.7 Evolution of static torque and optimal control 
(load current, motor torque and dynamic torque) during 

acceleration (µ0=0.8, k1=0.2, k2=0.2 şi ν& (0)=-1) 

Fig. 6 Evolution of extremal trajectory ( speed, 
acceleration and shock) during acceleration 

(µ0=0.6, k1=0.2, k2=0.2 şi ν& (0)=0.6 ) 

Fig. 5. Graphic of relations ( )[ ]1τν&fminJ = and 

( )[ ]12 τντ &f= during deceleration 
(µ0=0.6, k1=0.2, k2=0.2,ν1=1 şi ν2=0) 

Fig. 3. Minimum value of optimization criterion as 
function of initial  acceleration during acceleration

(µ0=0.6, k1=0.2, k2=0.2,ν1=0 şi ν2=1) 

Fig. 4. Terminal moment as function of initial 
acceleration during acceleration with 

(µ0=0.6, k1=0.2,k2=0.2, ν1=0 şi ν2=1) 



- Third step: from this graphs (fig. 3, fig. 4, fig. 5), 
we determine the optimum value of the initial 

acceleration ( )1τν*& , and the optimum value of the 

terminal moment *
2τ , which ensures the absolute 

minimum (least minimum) of quality index, for 
acceleration (fig. 3, fig. 4) and deceleration (fig. 5), 
respectively; 
- Fourth step: introducing the optimal value of initial 

acceleration ( )1τν*& in block diagram (fig. 2), 
through digital simulation (integration), we 
determine the time function for evolution of 
extremal trajectory (speed v*( τ), acceleration 

( )τν& and shock ( )τν*&& (fig. 6, fig. 8), static load 
torque µs(τ) and the evolutions of optimal control 
µ*(τ) and load current i*(τ), respectively (fig. 7, fig. 
9). From the results of this simulation, it is observed 
that optimal acceleration (dynamic torque) is equal to 
momentary static load torque value (fig. 7, fig. 9) 
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having as initial and terminal values 
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and that the optimal control function is equal to the 
double of the static load torque 
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during the acceleration period (fig. 7) and it is null 
during the deceleration  period (fig. 9) 
 

( ) ( ) ( ) ( )* *
s di τ = τ = 0 = µ τ + µ τµ (28) 

 
7. CONCLUSIONS 

 
The block diagram for simulation is general and it 
can be adapted for different expressions of static 
torque depending on the speed. The results expressed 
through obtained extremal trajectory and the optimal  
 

control function can be used both for the design and 
for the optimal control of the electric drive systems 
with the static torque depending on speed that work 
in the a continuous type service (S1) or in the 
uninterrupted type service with the periodical change 
of speed (S8).  
These results, through the energy saving that is 
achieved in the acceleration and deceleration 
processes, lead to the increase of quality and 
efficiency of the electric drives systems. 
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