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Abstract: Existence of nonlinear oscillations (periodic and almost periodic solutions)
for systems with deviated argument and sector restricted (Lurie type) nonlinearities)
has been discussed using the Liapunov functional approach as well as the approach
of the frequency domain inequality due to V.M. Popov. In this paper a comparison
of the computational issues of the two approaches is performed using a standard
example supplied by an electrical circuit containing a single lossless transmission line.
It is shown that the computational difficulties of the frequency domain method may
be overcome when a suitable Liapunov function(al) - here the stored electromagnetic
energy - is readily available.
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1. INTRODUCTION AND MOTIVATION

Propagation phenomena are usually considered as
describing some dynamics in oscillatory systems
with some interconnections which may display
space distribution in at least one dimension: prop-
agation is oscillation + waves. Lossless propaga-
tion is associated to transmission lines without
losses: LC electrical lines, lossless steam, water
or gas pipes; a recent reference recalling some
classical models is the paper of A. Halanay and
Vl. Răsvan(1997).

In electrical engineering applications the propa-
gation problem is closely related to circuit struc-
ture consisting of multipoles connected through
LC transmission lines. Since we intend to fo-
cus namely on such applications we start with
an example that is simple enough but neverthe-
less more complicated than the quasi-benchmark
structure with tunnel diode and transmission line
introduced by Brayton and Miranker (1964) and
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discussed by Infante (1971), A. Halanay and Vl.
Răsvan (1977, 1997) a.o.
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Fig. 1. Nonlinear circuit with a LC line

This circuit contains a nonlinear resistor and this
fact complicates the problem of a steady state.
Indeed, if the circuit were linear, its steady state
would be of the same type as the input signal,



the source E(t). A harmonic source would gen-
erate harmonic currents and voltages which were
computable using e.g. the symbolic method due to
K.P. Steinmetz. If the source were nonharmonic
then several cases would appear: a) a finite super-
position of harmonics implying a finite super-
position of harmonic steady states for the same
frequencies; b) an infinite superposition of har-
monics with rationally dependent frequencies i.e.
a Fourier series describing a periodic input signal
generating a periodic steady state with the same
period as the input signal; c) an infinite superpo-
sition of harmonics with rationally independent
frequencies i.e. a Dirichlet series describing an
almost periodic input signal generating an almost
periodic steady state.

This reproducibility of the input signal by a lin-
ear circuit (or, generally speaking, by a linear
dynamical system) is specific. Nevertheless there
are nonlinear systems which may preserve some
of these properties displaying an almost linear be-
havior (e.g. Răsvan, 2001). Such an almost linear
behavior may be analyzed either by a suitably
chosen Liapunov function or by the frequency
domain inequality of Popov. The convergence and
divergence points of the two methods have been
discussed in various contexts (e.g. A. Halanay,
1971, or Vl. Răsvan and S.I. Niculescu, 2002).
We want to show here, mainly by computing the
above example, how difficult is to decide for one
or other approach, thus insisting on application
priority.

Consequently the paper is organized as follows:
the mathematical model of the circuit is writ-
ten and a Liapunov functional of the form of
the stored electromagnetic energy is introduced.
This functional suggests how to choose a genuine
Liapunov functional for the associated system of
functional differential equations. This functional
is discussed in the context of the general Liapunov
theory for such equations. Further its Popov-like
counterpart is presented in order to make the com-
parison. Some conclusions are finally presented.

2. THE MATHEMATICAL MODEL AND THE
STORED ENERGY

A. The mathematical model of the circuit of fig.
1 is written using the standard development of
Kirchhoff laws and the Ohm law with its ana-
logues for electric and magnetic circuit elements





∂v

∂λ
= −L

∂i

∂t
,

∂i

∂λ
= −C

∂v

∂t
,

v(0, t) = v1(t) , v(1, t)−R2i(1, t) = v2(t)

−E(t)−R1i
′
(t) = v1(t) , C2

dv2

dt
= i(1, t)

C1
dv1

dt
= −i

′′
(t) , i

′′′
(t) = −f(v1(t))

i
′
(t) + i

′′
(t) + i

′′′
(t) = i(0, t)

(1)

In the lumped part of the circuit, the standard
choice of the state variables corresponds to the
voltages across the capacitors and this choice
is consistent with the fact that the nonlinear
resistor is voltage controlled. We may eliminate
the current variables i

′
, i
′′
, i
′′′

which are linearly
dependent of the state variables to obtain the
following model





∂v

∂λ
= −L

∂i

∂t
,

∂i

∂λ
= −C

∂v

∂t
,

v(0, t) = v1(t) , v(1, t)−R2i(1, t) = v2(t)

R1C1
dv1

dt
= −v1 −R1f(v1)−R1i(0, t)− E(t)

R2C2
dv2

dt
= R2i(1, t)

(2)

(the multiplication with Ri in the last equations
aimed to point out the time constants RiCi)

Let us comment on this model. We have here
a simple hyperbolic system of partial differen-
tial equations with standard boundary conditions
which are in “internal feedback” with some or-
dinary differential equations at both boundaries.
Such systems are quite well known. the reader is
sent to author’s book (1975), also to the survey of
A. Halanay and the author (1997) as well as to the
more recent book of Niculescu (2001). Without
additional details, let us mention that a one-to-
one correspondence may be established between
thew solutions of (2) and the solutions of the fol-
lowing system of functional differential equations





R1C1
dv1

dt
= −(1 + R1

√
C/L)v1(t)+

+2R1

√
C/Lη2(t−

√
LC)−R1f(v1(t))− E(t)

(1 + R2

√
C/L)R2C2

dv2

dt
= −R2

√
C/L(v2(t)−

−2η1(t−
√

LC))

η1(t) = v1(t)− η2(t−
√

LC)

η2(t) =
1

1 + R2

√
C/L

v2(t)−

−1−R2

√
C/L

1 + R2

√
C/L

η1(t−
√

LC)

(3)



This correspondence is obtained by introducing
the functions





η1(t) =
1
2
(v(0, t) +

√
L/Ci(0, t))

η2(t) =
1
2
(v(1, t) +

√
L/Ci(1, t))

(4)

which satisfy (3) and represent the solutions of (2)
as





v(λ, t) = η1(t− λ
√

LC) + η2(t− (1− λ)
√

LC)

i(λ, t) =
√

C/L
(
η1(t− λ

√
LC)−

− η2(t− (1− λ)
√

LC)
)

(5)

B. We associate now to system (2) the stored elec-
tromagnetic energy, taking into account that it is
stored in the lumped capacitors at the boundaries
of the line and in the distributed capacitors and
inductors of the line





E(v1, v2, i, v) =
1
2
[(C1v

2
1 + C2v

2
2)+

+

1∫

0

(Li2(λ, t) + Cv2(λ, t))dλ]
(6)

which clearly looks like a functional on some state
space; at its turn this state space appears as
a Cartesian product of some finite dimensional
space (here R2) and some function space that
accounts for the distributed parameters along the
LC transmission line.

Let (v1(t), v2(t), i(λ, t), v(λ, t)) be a solution of (2)
- assumed to exist - and write down the stored
energy along this solution

E?(t) ≡ E(v1(t), v2(t), i(λ, t), v(λ, t)) (7)

Differentiating E?(t) - formally, since nothing is
known about solution smoothness - we obtain





dE?

dt
= C1v1(t)v̇1(t) + C2v2(t)v̇2(t)+

+

1∫

0

[Li(λ, t)
∂i

∂t
(λ, t) + Cv(λ, t)

∂v

∂t
(λ, t)]dλ

and, taking into account (2)





dE?

dt
= −v1(t)(

v1(t)
R1

+ f(v1(t))−

−R2i
2
1(1, t)− v1(t)

R1
E(t)

(8)

For the case of the “free” circuit i.e. with E(t) ≡ 0
and moving under the initial conditions only, we
obtain dE?/dt ≤ 0 i.e. a non-increasing stored
energy because of the dissipation in the linear

lumped resistors R1, R2 as well as in the linear
lumped voltage controlled resistor f(v1). This will
ensure in any case Liapunov stability in the sense
of the norm induced by the energy function itself

E(v1(t), v2(t), i(·, t), v(·, t)) ≤
≤ E(v1(0), v2(0), i0(·), v0(·))

(9)

even if a certain “negative resistance” is allowed
by the sector (Lurie type condition)

f(σ)/σ ≥ − 1
R1

(10)

On the other hand it is known that even a lossless
line has an equivalent impedance that may modify
dissipation and this impedance does not appear
at all in the above discussion. Overcoming the
drawbacks of a Liapunov function(al) is not an
easy task. Our approach is to try to improve it
using Popov theory which asserts that a frequency
domain inequality is equivalent to the existence of
the most general Liapunov function(al) within a
certain class.

Since there are also other obscure points in the
above construction, it appears as rational to use
the associated system (3) and the representation
formulae (5). We deduce that E(v1, v2, i(·), v(·))
defined by (6) may be expressed using (5)

V (v1, v2, η1(·), η2(·)) =
1
2
(C1v

2
1 + C2v

2
2)+

+
√

C/L

0∫

−
√

LC

(η2
1(θ) + η2

2(θ))dθ
(11)

that is a functional of the simplest diagonal form.
This will be a good suggestion for the choice of a
suitable Liapunov function for the system (3) of
functional differential equations.

3. ALMOST LINEAR BEHAVIOR

Almost linear behavior for nonlinear systems has
been defined in e.g. (Barbălat and Halanay, 1974;
Răsvan, 2001). It means fulfilment of two ba-
sic properties: a) the system has a single glob-
ally asymptotically (possibly exponentially) sta-
ble equilibrium; b) if the system is excited (forced)
by a bounded “oscillatory” input signal (constant,
periodic, almost periodic) then it has a unique
bounded on R (the whole real axis - the “time”)
which is of the same type (“shape”) as the excita-
tion (i.e. constant, periodic with the same period
or almost periodic) and moreover, it is exponen-
tially stable.

We shall consider this major qualitative prop-
erty for a class of F(unctional) D(ifferential)



E(quations) that incorporates the example ana-
lyzed in the previous sections, namely the system





ẋ1(t) = A0(t)x1(t) + A1(t)x2(t− τ)−
−b1(t)φ(t, σ(t)) + f1(t)

x2(t) = A2(t)x1(t) + A3(t)x2(t− τ)−
−b2(t)φ(t, σ(t)) + f2(t)

σ = c∗(t)x1

(12)

with T -periodic coefficients Ai(t), bj(t), i =
0, 1, 2, 3, j = 1, 2; also φ(·, σ) is T -periodic but
the delay τ > 0 is nevertheless assumed constant.
Also the following globally Lipschitz condition is
fulfilled for φ

0 ≤ (φ(t, σ1)− φ(t, σ2))/(σ1 − σ2) ≤
≤ φ̄ < +∞

(13)

for all σ1 6= σ2 and all t ∈ [0, T ). before discussing
the main results some comments are necessary
since they send to paper’s title. This title is partly
reproducing that of (Halanay, 1971) - a “state of
the art” account of the genuine competition exist-
ing between the Liapunov method and that of the
frequency domain inequalities in the field of stabil-
ity and stable oscillations for systems with sector
restricted nonlinearity. Interesting comments on
this subject may be found e.g. in (op. cit.) also in
(Niculescu and Răsvan, 2002). here we shall focus
mainly on some applications to system (12).

A. The first (chronologically speaking) result is
based on Popov frequency domain inequality and
reads as follows

Theorem 1. Consider the nonlinear system (12)
under the following assumptions: i) the coefficients
of the linear part i.e.Ai, i = 0, 1, 2, 3, bi, i = 1, 2
and c are time invariant;ii) the linear part is
exponentially stable i.e. the linear system with
constant coefficients

{
ẋ1(t) = A0x1(t) + A1x2(t− τ)

x2(t) = A2x1(t) + A3x2(t− τ)
(14)

has the roots of the characteristic equation

det
(

λI −A0

−A2

−A1e
−λτ

I −A3e
−λτ

)
= 0 (15)

in the open L(eft) H(alf) P(lane) C− (in a nec-
essary way this will require the eigenvalues of A3

to be located inside the unit disk D1 ⊂ C); iii)
the nonlinear functionφ(t, σ) satisfies (13) for all
σ1 6= σ2 and real t; iv) the circle-like frequency
domain inequality

1
φ̄

+ <eH(ω) > 0, (16)

where, as usual,

H(s) = ( c∗ 0 )
(

sI −A0

−A2

−A1e
−sτ

I −A3e
−sτ

)−1 (
b1

b2

)

holds for all ω > 0; v) |f1(t)| + |f2(t)| < M .
Then there exists a bounded on the entire real axis
solution of (12) which is globally exponentially
stable. If f1, f2 and φ(·, σ) are periodic with ratio-
nally dependent periods, this solution is periodic.
If these periods are rationally independent or at
least one of these functions is almost periodic,
then the solution is almost periodic.

We send the reader to the corresponding reference
(Halanay and Răsvan, 1977) and focus on the
application of the theorem to the circuit of fig.
1 i.e. to system (3). Nevertheless we perform first
a “sector rotation” for the nonlinearity, replacing
the first equation of (3) by the following

R1C1
dv1

dt
= −av1(t)+

+2R1

√
C/Lη2(t−

√
LC)− ϕ(v1(t))− E(t)

(17)

where

ϕ(σ) := (1 + R1

√
C/L− a)v1 + R1f(v1)(18)

with a > 0 chosen appropriately. We check the
assumptions of Theorem 1. The characteristic
equation (15) is here (after some straightforward
manipulation based on the well known formulae
of Schur)

δ(λ) ≡ (T1λ + a)(T2λ + R2

√
C/L)−

−(T1λ + a− 2R1

√
C/L)×

×(ρT2λ−R2

√
C/L)e−λτ = 0

(19)

where we denoted

T1 = R1C1, T2 = (1 + R2

√
C/L)C2

√
C/L,

ρ = (1−R2

√
C/L)((1 + R2

√
C/L)−1,

τ = 2
√

LC

(20)

Checking the necessary (Stodola-like conditions)
for the C− root location of (19) - see the memoir
of Čebotarev and Mĕıman (1949) - we obtain
a > R1

√
C/L. Since we are interested in the

largest sector of the nonlinear function for the
almost linear behavior, take a = R1

√
C/L (for

a while). Then (19) becomes

(T1λ + R1

√
C/L)(T2λ + R2

√
C/L)−

−(T1λ−R1

√
C/L)(ρT2λ−R2

√
C/L)e−λτ = 0

(21)



which has λ = 0 as a root - a critical case.
Since existence of globally exponentially stable
forced oscillations is not solved in critical cases
even in the case without delay and Theorem 1
assumptions require all roots in C− we shall thus
take a = R1

√
C/L+ε with ε > 0 arbitrarily small

but well delimited from 0. Write now (19) as

(T1λ + R1

√
C/L + ε)(T2λ + R2

√
C/L)×

×
(

1− T1λ−R1

√
C/L + ε

T1λ + R1

√
C/L + ε

×

× ρT2λ−R2

√
C/L

T2λ + R2

√
C/L

e−λτ

)
= 0

(22)

and we may show that for ᾱ > 0 sufficiently small
equation (19) cannot have roots of the form −α+
ω provided α < ᾱ i.e. all roots of (19) satisfy
<e(λ) ≤ −ᾱ. Assume first that neither −(ε +
R1

√
C/L)/T1 nor −(R2

√
C/L)/T2 are roots of

(19); in this case all roots of (19) - or (22) - are
the roots of

(
1− T1λ−R1

√
C/L + ε

T1λ + R1

√
C/L + ε

×

× ρT2λ−R2

√
C/L

T2λ + R2

√
C/L

e−λτ

)
= 0

(23)

It is easy to show first that (23) cannot be 0 for
λ = ω i.e. on the imaginary axis R. Indeed we
have

(R1

√
C/L− ε)2 + ω2T 2

1

(R1

√
C/L + ε)2 + ω2T 2

1

×

×R2
2(C/L) + ρ2T 2

2 ω2

R2
2(C/L) + T 2

2 ω2
< 1

(24)

since each ration in (24) is less than 1 - the first
because ε > 0 and the second because ρ2 < 1;the
first condition has been assumed above and the
second is obviously fulfilled. remark also that for
ω → ∞ the second ratio equals ρ2 < 1 while the
first one equals 1 hence their product is still less
than 1.

This means that the modulus of the expression
subtracted from 1 in (23) never reaches 1 on R
and the maximum modulus principle says that in
C− this is also true. Since we want to avoid root
accumulation in the neighborhood of R, consider
now λ = −α + ω with α > 0. The analyzed
modulus is now

µ(ω) =
(R1

√
C/L− ε + αT1)2 + ω2T 2

1

(R1

√
C/L + ε− αT1)2 + ω2T 2

1

×

× (R2

√
C/L + αρT2)2 + ρ2T 2

2 ω2

(R2

√
C/L− αT2)2 + T 2

2 ω2
eατ

and from continuity with respect to α > 0 small
enough we deduce that µ(ω) < 1 for all ω ∈ R
provided ρ2 < 1. If either −(ε + R1

√
C/L)/T1 or

−(R2

√
C/L)/T2 is a root of (19) then a factor

with a root in C− is simplified and we repeat
the above construction for a single modulus ratio.
It is obvious that both −(ε + R1

√
C/L)/T1 and

−(R2

√
C/L)/T2 cannot be roots of (19). In this

way we checked fulfilment of the second assump-
tion of Theorem 1 by system (3) with the rotated
nonlinearity: its linear part is exponentially stable.

The transfer function of system’s linear part reads
as

H(s) = ν(s)/δ(s) (25)

where the denominator δ(s) is defined in (19)
being exactly system’s characteristic equation and
the numerator ν(s) is written below

ν(s) = T2s + R2

√
C/L− (ρT2s−R2

√
C/L)e−τs

and it may be checked via a lengthy computation
that <eH(ω) ≥ 0, ∀ω ∈ R.

In this way the assumptions of Theorem 1 are
all checked; its application will give existence and
exponential stability of forced (almost) periodic
oscillations.

B. As already mentioned, checking of (16) may be
somehow lengthy even on some low order system,
as the considered example. On the contrary, a
suitably chosen Liapunov functional, suggested by
the energy function - which is well known in the
case of the electrical circuits - transformed via the
representation formulae (5) - may give equivalent
results with less computational effort. We state
here the Liapunov functional result

Theorem 2. Consider system (12) and assume
that i), ii) and v) of Theorem 1 hold. Assume also
that: iv’) there exist positive definite matrices P
and R such that the following matrix inequalities
hold




H11 H12 H13

H∗
12 H22 H23

H∗
13 H∗

23 H33


 ≤ 0 ,

(
H11 H12

H∗
12 H22

)
< 0

(26)

where we denoted



H11 = A∗0P + PA0 + A∗2RA2,

H12 = PA1 + A∗2RA3

H13 = −(Pb1 + A∗2Rb2) +
1
2
c,

H22 = A∗3RA3 −R

H23 = −A∗3Rb2, H33 = b∗2Rb2 − 1
φ̄

(27)

Then the conclusion of Theorem 1 holds.

The proof of this theorem may be found in
(Niculescu and Răsvan, 2002); we mention nev-
ertheless that it is mainly based on the properties
of the Liapunov functional

V (x1, x2(·)) = x∗1Px1+

+

0∫

−τ

x∗2(θ)Rx2(θ)dθ
(28)

where P and R are those of Theorem 2.

We apply further this result to our example.
First we rewrite its equations according to the
change of the nonlinear function (18) with the
choice suggested by the Stodola-like conditions,
a = R1

√
C/L





R1C1
dv1

dt
= 2R1

√
C/Lη2(t−

√
LC)−

−R1ϕ(v1(t))− E(t)

(1 + R2

√
C/L)R2C2

dv2

dt
= −R2

√
C/L(v2(t)−

−2η1(t−
√

LC))

η1(t) = v1(t)− η2(t−
√

LC)

η2(t) =
1

1 + R2

√
C/L

v2(t)−

−1−R2

√
C/L

1 + R2

√
C/L

η1(t−
√

LC)

(29)

where ϕ(v1) = (1 + R1

√
C/L)v1 + R1f(v1).

The Liapunov functional is suggested by (11)
but we shall introduce also some free parameters
for “optimization” (i.e. some additional available
choice)

V (v1, v2, η1(·), η2(·)) =
1
2
[R1C1v

2
1+

+a1(1 + R1

√
C/L)R2C2v

2
2 ]+

+

0∫

−
√

LC

(
a2η

2
1(θ) + a3(1 + R1

√
C/L)2η2

2(θ)
)

dθ

(30)

with ai > 0, i = 1, 2, 3 subject to choice. Since all
physical parameters are positive, the functional is
clearly positive definite on R2×L2(−√LC, 0;R2).
We compute its derivative along the solutions of
(29) i.e. we differentiate V ?(t)=V (v1(t), v2(t),
η1(t + ·), η2(t + ·)) and take into account (29) to
obtain

Wt(v1, v2, η1(·), η2(·)) = −v1ϕ(v1) + a2v
2
1+

+2(R1

√
C/L− a2)v1η2(−

√
LC)−

−(a3(1 + R1

√
C/L)2 − a2)η2

2(−
√

LC)−

−(a1R2

√
C/L− a3)v2

2+

+2(a1R2

√
C/L− a3)v2η1(−

√
LC)−

−(a2 − a3(1−R2

√
C/L)η2

1(−
√

LC)− v1E(t)

(31)

In (31) we see two decoupled second order
quadratic forms that have to be negative definite
by a suitable choice of ai > 0 and of some δ0 > 0
such that

v1ϕ(v1) ≥ (a2 + δ0)v2
1 (32)

Since we search for the largest possible sector
of the nonlinearity, a2 > 0 has to be as small
as allows the choice for the negative definiteness
of the two quadratic forms of (31). Some simple
but not quite straightforward computation shows
that this choice is given by the inequalities below
(deduced from two independent sets of Sylvester
conditions)





R1

√
C/L

(1 + R2

√
C/L)2

<
a3

a1
+

+
1

4(1 + R2

√
C/L)2

· δ0

a1
<

< R2

√
C/L +

1
4(1 + R2

√
C/L)2

· δ0

a1
;

a2

a1
> R2

√
C/Lψ(R2

√
C/L

a1

a3

(33)

where

ψ(x) = 1 +
R2

√
C/L

x
+

(R2

√
C/L)2

x(x− 1)
(34)

with x > 1. It is easy to see that no generality is
affected by choosing a1 = 1. Since ψ(x) > 1 and
is monotonically decreasing for x > 1 we need
a3 as small as possible to obtain the RHS of the
second inequality of (33) as small as possible; this
will lead to the smallest possible a2 hence to the
largest possible sector.



4. CONCLUSIONS AND PERSPECTIVE

We have given in this paper several points of
contact and results connected to the standard by
now dialectics of the two methods applied in the
qualitative analysis of the systems with sector re-
stricted nonlinearities: the Liapunov function(al)
method and the Popov frequency domain inequal-
ity method. These methods have been shown since
more than four decades to be equivalent via posi-
tivity theory (Yakubovich-Kalman-Popov lemma)
which has been extended some three decades ago
to Hilbert spaces being thus applicable to time
delay and propagation systems. In practice the
things are different and this may be seen on our
example. The ultimate truth of the positivity the-
ory is that the frequency domain inequality (which
depends in a unique way of system’s structure
and parameters - it is “mechanically” obtained)
is equivalent to existence of the most general Lia-
punov function(al) with the structure “quadratic
form (on the Hilbert state space) plus the integral
of the nonlinear function”

V (x) = (x,Hx) + β

(c,x)∫

0

ϕ(λ)dλ (35)

where x denotes the state on the Hilbert space,
( , ) is the scalar product on that Hilbert space
and H = H∗ is a Hermitian operator which
is subject to some Linear Operator Inequalities
of Riccati type. Solution of these inequalities is
rather difficult. We restricted ourselves to a spe-
cial case leading to Linear Matrix Inequalities
which provide delay independent conditions of
almost linear qualitative behavior. Moreover, in
such applications as electric circuits, where a Li-
apunov functional is naturally associated, as an
energy-like functional, the results may be quite
complete, with a minimum of computation (like in
our example). Besides computational effort, max-
imal performance is also a goal of the approach.
At the nonlinearity level the evaluation is given by
the almost linear behavior sector i.e. by the answer
to the old problem of Aizerman, stated in the 40ies
but still of interest (see the book of Egorov, 1998
and, for delay systems, the quite recent paper of
the author, 2004). The sharpest results are given
by the Liapunov function(al), the most general
(i.e. invariant with respect to the state space
choice) by the frequency domain inequality. The
computational effort may give priority to any of
the two methods according to the specific appli-
cation. hence, as in 1971 (A. Halanay) or in 2002
(Vl. Răsvan and S.I. Niculescu) the question still
stays: for or against Liapunov functions?

REFERENCES

Brayton, R. K. and Miranker, W. L. (1964).
Oscillations in a distributed network, Arch. Rat.
Mech. Anal., vol. 17, 358–376.
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Răsvan, Vl. (2001). Almost linear behaviour in
systems with sector restricted nonlinearities,
Proceedings of the Romanian Academy, Series
A: Mathematics, Physics, Technical Sciences,
Information Science, vol. 2, no. 3, 127–135.
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