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Abstract: Continuing the papers (Colosi et al, 2002; Colosi et al, 2003; Bogdan, 2005), 
are presented significant aspects of modeling and numerical simulation of some 
categories of processes, defined by partial differential equations (pde) of I and II order, 
with frequent applications in technique. The originality of the paper is the definition and 
the use of the (Mdpx) operating matrix, which, beside the disadvantage of a relatively high 
volume of calculus, cumulate as the main advantage the quasi-general applicability of 
the method for a large category of (pde), linear or nonlinear. This main advantage is 
attested by numerous examples, run on computer 
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1. INTRODUCTION 

 
For general forms of (pde) of I and II order: 
 
a0000

.x0000+a1000
.x1000+a0100

.x0100+a0010
.x0010+a0001

.x0001=
=φ(t, p, q, r)    (1) 
 
respectively 
 
a0000

.x0000+a1000
.x1000+a2000

.x2000+a1100
.x1100+a0200

.x0200+ 
+a0110

.x0110+a0020
.x0020+a0011

.x0011+a0002
.x0002+a1001

.x1001 
+a1010

.x1010+a0101
.x0101+a0101

.x0101=φ(t, p, q, r), 
      (2) 
 
are considered four independent variables: time (t) 
and the spatial variables (p), (q) and (r). 
For the partial differentials is adopted the obvious 
notation: 
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where the dependent variable y = y(t, p, q, r) and the 
function φ(t, p, q, r) respects the continuity 
conditions in Cauchy sense. If, for example, T = 0, P 
= 0, Q = 0 and R = 0, or T = 0, P = 1, Q = 0 and R = 
0, or T = 1, P = 0, Q = 1, R = 0, then results 
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Respectively. 
Of course, (1) and (2) can be limited to three 
independent variables, for example (t, p, q), resulting: 
 
a000

.x000+a100
.x100+a010

.x010+a001
.x001=φ(t, p, q) 

      (7) 
 
respectively 
 



a000
.x000+a100

.x100+a200
.x200+a110

.x110+a020
.x020+a011

.x011
+a002

.x002+a101
.x101 =φ(t, p, q). 

      (8) 
 
If (1) and (2) is limited to two independent variables, 
for example (t, p), then results: 
 
a00

.x00+a10
.x10+a01

.x01=φ(t, p)  (9) 
 
respectively 
 
a00

.x00+a10
.x10+a20

.x20+a11
.x11+a02

.x02 =φ(t, p). 
      (10) 
 
All the coefficients (a...) from (1), (2), (7), (8), (9) and 
(10) are considered constants, and in the hypothesis 
of numerical integration with respect to time, 
considered in the present work, the elements of the 
state vector (x) is presented in Table 1. 
 

Table 1. 
Order I II 
Pde (1) (7) (9) (2) (8) (10) 
x x0000 x000 x00 x0000 

x1000 
x000 
x100 

x00 
x10 

 
It can be observed that for I order (pde) corresponds 
x(1×1) and for II order (pde) corresponds x(2×1). 
Multiple versions can present initial conditions 
xIC=x(t0, ...), final conditions xFC=x(tf, ...) and 
boundary conditions, for example xBC=x(t, p0, ...) or 
xBC=x(t, pf, ...). 
 
 

2. OPERATOR MATRIX (Mdpx) 
 
The definition and the detailed presentation of the 
operating matrix (Mdpx) is exposed in (Colosi et al, 
2003), which for (2) leads to the particular form: 
 



























=







=

++ PQR,N2000,N2

PQR33000

PQR22000

PQR11000

PQR00000

TPQRT

PQR
dpx

x

x
x
x
x

   

x

x
x
x
x

xx
xx

M

MM

. (11) 

 
For n = 2, the (Mdpx) matrix is partitioned as follows: 

a) The state vector x(2×1); 
b) The Nth with respect to time derived state 

vector xT(N×1); 
c) The xPQR(2×M) matrix, which contains (M) 

successive partial differentials of the state 
vector x(2×1), with respect to the 
independent variables (p, q, r), for 
combinations of order 0, 1, 2, … . Because 
at the start of calculus (t = t0) the two state 
variables x0000(t0, p, q, r) and x1000(t0, p, q, r) 
are known initial conditions, the analytical 
partial differentials with respect to (p, q, r) is 

recommended to be calculated for as high 
order is possible; 

d) The xTPQR(N×M) matrix is successively 
calculated from the first element of the 
vector xT, which results from (2), at t = t0, 
respectively 
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As a result, all the components (x…) from the right 
side are known from x(t0, p, q, r) and xPQR(t0, p, q, r), 
which represents the two rows above the element 
(x2000) from (12). To calculate the first line of the 
matrix (xTPQR), respectively (x2PQR), are operated 
successive partial differentials on (x2000) from (12), 
with respect to (p, q, r), with an adequate high order, 
with the note that all these partial results are obtained 
from the previous calculated rows, disposed above 
this first row of (xTPQR). 
In the following is calculated (x3000), by derivation of 
(12) with respect to (t), after which the successive 
partial derivation is repeated with respect to (p, q, r), 
formally identical with (x2000). The note that all the 
partial results will be takes over from the previous 
calculated rows, disposed above the second row of 
(xTPQR), remain valuable. 
This algorithm is repeated for (N≥4) number of rows 
and (M≥10), after which it is obtained the operator 
matrix at the sequence (k-1), respectively: 
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The elements of the matrix (Mdpx,k-1) from (13) 
allows the approximation of the vector (xk) and the 
matrix (xPQR,k) by (truncated) Taylor series from the 
obvious series: 
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where to the sequences (k-1) and (k) corresponds the 
time (tk-1) and tk = tk-1 + ∆t, respectively, with the 
integration step (∆t) small enough and 4≥ω . 
With the results (14) and (15) are completed the first 
two rows of the vector (Mdpx,k) for the new (k) 
sequence: 
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The calculus details for (xT,k) and (xTPQR,k) are the 
same with the previous sequence (k-1) calculus, in 
conformity with the equations (12), (13), resulting 
the matrix (16) at the new sequence (k) and time (tk), 
formally identical with the matrix (13), considered at 
the previous sequence (k-1) and time (tk-1). 
 
 

3. EXAMPLES RUN ON COMPUTER 
 
For the two pde examples, considered for general 
forms (1) and (2), it was considered: 

a) t0=0; p0=0; q0=0; r0=0; tf=1; pf=1; qf=1; rf=1. 
b) The coefficients a0000=1; a000=1 and a00=1. 
c) The analytical solution yAN(t, p, q, r), 

necessary for the validation of the errors 
cumulated in percent (ercp) and for the start of 
calculus, is considered of exponential form, 
usual in various technical applications, 
respectively: 
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which can be particularized for yAN(t,p,q) if J1R=0, 
J2R=0 and J0R=1, respectively for yAN(t,p) if – 
supplementary – J1Q=0, J2Q=0 and J0Q=1. 

d) Using the following abbreviations: 
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and u=1, the evolution of the analytical 
solution yAN(t, p, q, r) is limited inside of a 
(super)cube with unitary length. (T1) and (T2) 
are time constants, and (P1, P2, Q1, Q2, R1 and 
R2) can be interpreted as “length” constants” if 
(p, q and r) are spatial coordinates 

e) The performance indicator of numerical 
integration is defined by the cumulated 
relative error in percent (crep) by form: 
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where k...00ANkk...00 xyx∆ −=  represent the 
absolute value of the sequential error between 
the analytical solution (yANk) and the 
numerical approximated solution (x00…k), 
between the limits k0=0 and kf=tf/∆t. The 

integration step is 
100
t

t∆ f≅  in a minimal 

version or 
100
T

t∆ 1≅  in a more restrictive 

version, where T1<T2. 
 
In the following, in conformity with the pde solving 
method exposed in 2), satisfying the conditions 
presented in 3) in paragraphs a, b, …, e, are 
presented the results, obtained by numerical 
simulation. 
 
 
3.1. Pde I(t, p, q, r) by form (1) 
 
for a1000=T1=tf/4; a0100=P1=pf/4; a0010=Q1=qf/4; 
a0001=R1=rf/4; T2=0; P2=0; Q2=0; R2=0; J1T=-1 ; 
J2T=0 ; J1P=-1 ; J2P=0 ; J1Q=-1 ; J2Q=0 ; J1R=-1 ; 
J2R=0 ; n=1 ; N=6 ; M=20 ; ∆t=0.01. 
 

Table 2 
t x0000 yAN ANy&  crep 

0.01 1.0371 1.0371 3.6358 5⋅10-6 

0.1 1.3367 1.3368 2.4372 0.0024 
0.2 1.5208 1.5210 1.7004 0.0058 
0.3 1.6608 1.6611 1.1398 0.0099 
0.4 1.7546 1.7550 0.7640 0.0136 
0.5 1.8175 1.8180 0.5121 0.0167 
0.6 1.8597 1.8602 0.3433 0.0190 
0.7 1.8880 1.8885 0.2301 0.0206 
0.8 1.9071 1.9075 0.1543 0.0212 
0.9 1.9199 1.9202 0.1034 0.0208 
1 1.9287 1.9287 0.0693 0.0194 

 
The results from Table 2 corresponds to p=pf=1; 
q=qf=1; r=rf=1. With respect to the time constant 
a1000=T1=tf/4=0.25, the integration step ∆t=0.01 

2

N

1 M 



represents 
25
1

T
t∆

1
= , a relatively high value. Still, 

(crep) is maintained in very low limits, which 
highlight the correctness of the method. 
  
 
3.2. Pde I(t, p, q) by form (7) 
 
for a100=T1=tf/4; a010=P1=pf/4; a001=Q1=qf/4; T2=0; 
P2=0; Q2=0; J1T=-1 ; J2T=0 ; J1P=-1 ; J2P=0 ; J1Q=-1 ; 
J2Q=0 ;  n=1 ; N=6 ; M=20 ; ∆t=0.01. 
 

Table 3 
t x0000 yAN ANy&  crep 

0.01 1.0378 1.0378 3.7037 3⋅10-5 

0.1 1.3430 1.3430 2.4826 1.7⋅10-3 
0.2 1.5305 1.5307 1.7321 4.1⋅10-3 
0.3 1.6732 1.6734 1.1610 7⋅10-3 
0.4 1.7688 1.7691 0.7783 9.9⋅10-3 
0.5 1.8329 1.8333 0.5217 1.25⋅10-2

0.6 1.8758 1.8763 0.3497 1.49⋅10-2

0.7 1.9046 1.9051 0.2344 1.7⋅10-2 
0.8 1.9238 1.9244 0.1571 1.88⋅10-2

0.9 1.9368 1.9374 0.1053 2.04⋅10-2

1 1.9454 1.9461 0.0706 2.18⋅10-2

 
The results from Table 3 corresponds to p=pf=1; 
q=qf=1. With respect to the time constant 
a100=T1=tf/4=0.25, the integration step ∆t=0.01 

represents 
25
1

T
t∆

1
= , a relatively high value in this 

case to. Still, (crep) is maintained in very low limits, 
which highlight the correctness of the method. 
 
 
 
3.3. Pde I(t, p) by form (9) 
 
for a10=T1=tf/4; a01=P1=pf/4; T2=0; P2=0; J1T=-1 ; 
J2T=0 ; J1P=-1 ; J2P=0 ; n=1 ; N=6 ; M=20 ; ∆t=0.01. 
 

Table 4 
t x0000 yAN ANy&  crep 

0.01 1.0385 1.0385 3.7728 3⋅10-12 

0.1 1.3494 1.3494 2.5290 1.21⋅10-11

0.2 1.5406 1.5406 1.7644 1.54⋅10-11

0.3 1.6860 1.6860 1.1827 1.65⋅10-11

0.4 1.7835 1.7835 0.7928 1.63⋅10-11

0.5 1.8488 1.8488 0.5314 1.55⋅10-11

0.6 1.8926 1.8926 0.3562 1.45⋅10-11

0.7 1.9220 1.9220 0.2388 1.34⋅10-11

0.8 1.9417 1.9417 0.1601 1.23⋅10-11

0.9 1.9549 1.9549 0.1073 1.12⋅10-11

1 1.9637 1.9637 0.0719 1.03⋅10-11

 
The results from Table 4 corresponds to p=pf=1. In 
this case to, with respect to the time constant 
a10=T1=tf/4=0.25, and the integration step ∆t=0.01 

which represents 
25
1

T
t∆

1
= , a relatively high value, 

the performance indicator (crep) is maintained at 
negligible values, which attest the correctness of the 
method. 
 
 
3.4. Pde II(t, p, q, r) by form (2) 
 
for all a…=1; T1=0.15tf; T2=0.2tf; P1=0.15pf; P2=0.2pf; 
Q1=0.15qf; Q2=0.2qf; R1=0.15rf; R2=0.2rf; n=2 ; 
N=6 ; M=25 and ∆t=0.01. 
 

Table 5 
t x0000 yAN ANy&  crep 

0.01 1.0015 1.0015 0 0 
0.1 1.1241 1.1241 2.8891 1.6⋅10-5 
0.2 1.2976 1.2976 2.5462 1.09⋅10-4

0.3 1.4787 1.4787 1.6892 2.6⋅10-4 
0.4 1.6219 1.6219 1.0157 3⋅10-4 
0.5 1.7258 1.7259 0.5744 1.1⋅10-3 
0.6 1.7974 1.7978 0.3144 3.5⋅10-3 
0.7 1.8452 1.8459 0.1686 8⋅10-3 
0.8 1.8764 1.8774 0.0892 1.4⋅10-2 
0.9 1.8970 1.8977 0.0468 1.8⋅10-2 
1 1.9117 1.9106 0.0244 1.9⋅10-2 

 
The results from Table 5 corresponds to p=pf=1; 
q=qf=1; r=rf=1. The integration step ∆t=0.01 

represents only 
15
1

15.0
01.0

T
t∆

1
== from the smallest 

time constant (T1), but the performance indicator 
(crep) is maintained at sufficiently low limits, which 
highlight the correctness of the method. 
 
 
3.5. Pde II(t, p, q) by form (8) 
 
for all a…=1; T1=0.15tf; T2=0.1tf; P1=0.15pf; P2=0.1pf; 
Q1=0.15qf; Q2=0.1qf; n=2 ; N=6 ; M=30 and ∆t=0.01. 
 

Table 6 
t x0000 yAN ANy&  crep 

0.01 1.0031 1.0031 0 0 
0.1 1.2232 1.2232 2.8783 0 
0.2 1.4763 1.4763 2.5367 10-4 
0.3 1.6884 1.6884 1.6919 5.7⋅10-4 
0.4 1.8221 1.8220 1.0120 1.7⋅10-3 
0.5 1.8999 1.8997 0.5723 3.5⋅10-3 
0.6 1.9433 1.9429 0.3132 5.8⋅10-3 
0.7 1.9666 1.9664 0.1679 7.4⋅10-3 
0.8 1.9787 1.9788 0.0888 7.2⋅10-3 
0.9 1.9842 1.9854 0.0466 1.07⋅10-2

1 1.9859 1.9889 0.0243 2.15⋅10-2

 
In this case to, the integration step (∆t) represents 

only 
10
1

10.0
01.0

T
t∆

2
== from the smallest time constant 



(T2), but the performance indicator (crep) is not 
greater than 0.0215%. 
 
 
3.6. Pde II(t, p) by form (10) 
 
for all a…=1; T1=0.15tf; T2=0.1tf; P1=0.15pf; P2=0.1pf; 
n=2 ; N=6; M=20 and ∆t=0.01. 
 

Table 7 
t x0000 yAN ANy&  crep 

0.01 1.0031 1.0031 0 0 
0.1 1.2240 1.2240 2.8999 3.7⋅10-7

0.2 1.4781 1.4781 2.5557 8.8⋅10-7

0.3 1.6910 1.6910 1.7046 1.4⋅10-6

0.4 1.8251 1.8251 1.0195 1.9⋅10-6

0.5 1.9031 1.9031 0.5766 2.4⋅10-6

0.6 1.9465 1.9465 0.3156 2.8⋅10-6

0.7 1.9700 1.9700 0.1692 3.2⋅10-6

0.8 1.9825 1.9825 0.0895 3.8⋅10-6

0.9 1.9891 1.9891 0.0469 1.6⋅10-5

1 1.9925 1.9926 0.0245 1.5⋅10-5

 
In this case to, the integration step (∆t) represents 

only 
10
1

10.0
01.0

T
t∆

2
== from the smallest time constant 

(T2), but the performance indicator (crep) is 
negligible. 
This form (10) of pdeII(t, p) was particularized in the 
versions: 

- elliptic: 0aa4a 0220
2
11 <⋅− ; 

- parabolic: 0aa4a 0220
2
11 =⋅− ; 

- hyperbolic: 0aa4a 0220
2
11 >⋅− , 

obtaining the same negligible values for (crep). 
 
 

4. CONCLUSIONS 
 
4.1. The present paper deals with general and 

complete forms of pde I and II, with for 
variables (t, p, q r), which are than particularized 
for three variables (t, p, q) and two variables (t, 
p), in the last case including the elliptic, 
parabolic or hyperbolic versions. The numerical 
integration is operated with respect to time, for 
(p), (q) and (r) constants. 

4.2. The integration interval is framed in unitary 
reported measures, which limits the integration 
space inside of a (super)cube with unitary size, 
with the note that this size can be easily 
modified. 

4.3. The considered examples operates with forced 
solutions, by exponential form (17), usual in 
technique. 

4.4. All the examples are solved in a unitary and 
systematized manner, using the operator matrix 
(Mdpx) method, considered original, with the 
advantages and disadvantages presented in the 
Abstract of this paper. 

4.5. The numerical simulation performances, using 
this method, are defined by the cumulative 
relative error in percent (crep), which for N=6, 
M=(23-30) and ∆t=10-2=tf/100 (relatively high 
values), leads to crep ≤0.022%. 

4.6. The logical scheme, based on this method, is 
simple and flexible, without special 
programming problems. 
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