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Abstract: The paper presents a Simulink blockset that extends the usage of Simulink 
environment toward the area of neuro-fuzzy predictive control of non-linear processes. 
The blockset provides tools for identification, simulation and controller design based on 
neuro-fuzzy models. The user can circumvent the need for writing program codes, by 
simply operating with diagram blocks, in full accordance with the "drag and drop" 
technique specific to Simulink. The newly created blocks are easy to handle and versatile, 
permitting the selection of various options for model construction and control strategy. 
The first part of the article gives details about the algorithmic support and the software 
implementation. The second part illustrates the exploitation of the blocks for an example 
of reference tracking control taken from literature. 
 
Keywords: non-linear predictive control, neuro-fuzzy identification, neuro-fuzzy control, 
ANFIS procedure, Simulink. 

 
 
 

 
1. INTRODUCTION 

 
The Model Based Predictive Control (MBPC) is a 
strategy that finds a control trajectory over a future 
time horizon based on a dynamic model of the 
process. In the last decades, MBPC has become an 
important and a distinctive part of control theory and 
has been widely used in the area of industrial 
applications. All predictive controllers are based on 
the fact that the process output can be predicted over 
a time horizon by using the past process inputs and 
outputs, if a suitable model of the plant is known. 
 

There are many algorithms proposed in literature for 
implementing a predictive control, such as: Model 
Algorithmic Control – MAC (Mehra and Rouhani, 
1982), Extended Prediction Self - Adaptive Control – 
EPSAC (De Keyser and Van Cauwenberghe, 1985), 
Generalized Predictive Control – GPC (Clarke et el., 
1992) and Unified Predictive Control – UPC 
(Kadirkamanathan, 1996). The mentioned algorithms 
are quite similar in the sense that they are based on 

the same general ideas: receding horizon principle, 
plant model as part of the controller, prediction of the 
system output and optimization of a cost function. 
The differences between the algorithms consist in the 
used plant models and the chosen cost function. 
 
The model used in the predictive controller plays a 
decisive role in obtaining a successful control 
strategy that can be applied to a real plant. The model 
must be capable to accurately describe the process 
dynamics, it should be easy to implement and at the 
same time fast in simulation. Considering these 
points of view, for many plants, a neuro-fuzzy 
system can prove to be a good model to use in a 
predictive controller. 
 
This paper is dedicated to the efficient exploitation of 
the well-known environment MATLAB-Simulink for 
designing and testing neuro-fuzzy predictive 
controllers. It presents a Simulink blockset developed 
at the Department of Automatic Control and 

 



Industrial Informatics of the Technical University 
"Gh. Asachi" of Iasi, that covers the standard 
problems of MBPC relying on neuro-fuzzy models. 
We have developed a blockset similar to the one 
developed in (Kloetzer and Pastravanu, 2004), except 
this new one is based on neuro-fuzzy techniques - the 
mathematical model is obtained with the ANFIS 
procedure (Jang, 1995). This blockset allows the user 
to operate only with block diagrams for model 
construction and validation, as well as for the 
simulation of predictive control strategies. Thus, the 
user can focus on the control engineering aspects of 
the application, by eliminating programming tasks, 
which are important time-consumers in the absence 
of such predesigned software modules. These 
modules are organized as a library of S-functions, 
fully compatible with the drag and drop philosophy 
of the Simulink package. 
In the construction of the current paper we 
incorporate the software facilities created by our 
previous work (Dragnea and Olaru, 2004) for 
identification and simulation experiments under 
Simulink, relying on neuro-fuzzy models. We also 
derive a full benefit from the experience accumulated 
by our research group (Kloetzer, et. al., 2001, 
Kloetzer and Pastravanu, 2004) in the exploitation of 
the MATLAB-Simulink environment for neural-
network-based identification and control of nonlinear 
dynamical systems. 
The paper is organized as follows: the first part 
presents the theoretical preliminaries of neuro-fuzzy 
predictive control (Section II), continuing with the 
presentation of the new Simulink library created for 
neuro-fuzzy system-based control applications 
(Section III), followed by a case study that illustrates 
the usage of the blocks in Section IV and finally, in 
Section V, some conclusions are formulated to 
underline the importance of the results. 
 
 

2. PREDICTIVE CONTROL BASED ON 
NEURO-FUZZY MODELS 

 
An intuitive graphical representation of the predictive 
control strategy is given in Fig. 1. At each time 
moment k·T, where T is the sample time and it will be 
omitted in the following formulas for simplicity, the 
future control policy u is computed in the idea that 
the process output y will accurately follow the 
reference trajectory r. 
 
In presenting the basics of the standard predictive 
control, the following notations will be used: Nu – the 
control horizon; N1 – the minimum prediction 
horizon; N2 – the prediction horizon; λ – the weight 
factor; r – the reference trajectory. 
 
The predictive control based on neuro-fuzzy models 
uses a neuro-fuzzy system to calculate the future 
plant output and a cost function based on the error 
between the predicted process output and the 
reference trajectory. The cost function, which may be 

different from case to case, is minimized in order to 
obtain the optimal input control that is applied to the 
non-linear plant. A possible form of the cost 
function, used in most predictive control algorithms, 
is given by the following expression: 
 

[ ]

[ ]

2 2( ) ( )
1

2     ( 1) ( 2)
1

N
J r k i y k i

i N

Nu
u k i u k i

i
λ

= + − + +∑
=

+ − − + −∑
=

       (1) 

Usually, the weight factor is considered λ = 0 and the 
minimum prediction horizon is N1 = 1. At each time 
moment k, the cost function J is minimized with 
respect to the vector containing the future input 
values: 
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ig. 1. MBPC strategy 

he process to be controlled is described by: 
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here i = N1...N2 denotes the order of the predictor, 
 and n are the number of delays for input and output 
f the model respectively, d is the dead time from (3) 
d k is the current time moment. By feeding the 

euro-fuzzy system with the vectors from (4), one 
n obtain the ith - step ahead predictor y(k+i), as 

resented in Fig. 2. 

 computing the future outputs of the process, if N2 
 Nu+d, after the (Nu + d)-th iteration, the control 
gnal will be kept constant at a value equal to 



u(k+Nu). The predictive control algorithm relies on 
steps described below for an arbitrary discrete-time 
instant k: 
• the previous iteration, after the minimization 
procedure at the moment k-1, has given the command 
vector ; T

uNkukukuu )]1( ..., ),1(),([old −++=
• the step ahead predictors y(k+i) of orders 
i=N1...N2, are calculated by using the vectors u(k+i-
d), y(k+i-1); 
• the optimal control signal is achieved by 
minimizing the cost function J in (1) with respect to 
the command vector:  ),...2(),1([new ++= kukuu

T
uNku )]( ..., + . 
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classical manner. The blocks available in this library 
are presented in a compact form by fig.4. The 
NF_IDN (Fuzzy Training) block serves in 
constructing neuro-fuzzy model, whereas the 
NF_SIM (Fuzzy Simulator) block serves in 
simulating the model. Details on the implementation 
and exploitation of these blocks can be found in a 
previous work of ours (Dragnea and Olaru, 2004). 
The NF_CON (Neuro-fuzzy predictive controller) 
block is the latest created and added to the Simulink 
blockset presented in Fig. 4. 
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 to the process and the algorithm is reiterated. 
first iteration, the initial input u(0) must be 
d by the user. 

ering the basic theoretical preliminaries of 
presented in this section, a block diagram of a 
d predictive controller is depicted in Fig. 3. 

Basic structure of MBPC 

 
 BLOCKS AVAILABLE IN THE NEW 

LIBRARY AND THEIR USAGE 

imulink library dedicated to neuro-fuzzy-
-based control applications brings many 
ges, as it offers a more attractive perspective 
trol engineering than writing codes in a 

 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4. Components of the Simulink blockset 
developed for neuro-fuzzy-system-based control 
applications. 
 
The modular architecture of the NF_CON block is 
presented in Fig. 5. The nucleous of the controller is 
the predctrl, which treats the first and the third steps 
of the algorithm described in section 2. The 
procedure cost.m provides the computations 
requested by the second step of the algorithm and for 
the construction of the objective (cost) function J. 
This procedure is called from the main routine after 
the first step, and the returned objective function is 
minimized in the third step. For the minimization of 
the cost function, the procedure fmincon from the 
Optimal Toolbox was used, which allows imposing 
constraints for the values of the control input. At 
each iteration, the S-function predctrl stores a vector 
containing the last Nu values of the control signal 
applied to the plant and, at the next time moment, 
this vector will be used as an initial guess for starting 
the minimization. 
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ig. 5. Modular architecture of NF_CON block 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6. Dialog box for NF_CON block 
 
The dialog box of the NF_CON block, as you can 
see in Fig. 6, allows the user to specify the 
parameters related both to the neuro-fuzzy 
architecture (parameter vector, dead time, number of 
input and output delays in model (2)) and to the 
control algorithm (minimum prediction horizon, 
prediction horizon, control horizon, constraints for 
the control signal, weight vector and initial input). 
The reference trajectory must be stored in a 
workspace vector, because it is supposed to be a 
priori known. The vector containing the neuro-fuzzy 
model parameters has the same structure as the 
vector resulting from the identification with the 
Simulink block NF_IDN. 
 
 

4. ILLUSTRATIVE CASE STUDY 
 

In order to illustrate the usage of our Simulink 
blockset, this section presents the steps taken for the 
synthesis of a neuro-fuzzy predictive controller 
corresponding to the non-linear plant described by 
the difference equation (Liu et al., 1996): 
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Initially, the plant described by (5) was identified by 
using the NF_IDN  block, with a sampling period T 
= 1 second. Then, the neuro-fuzzy model was 
validated by simulation, using the specific block 
NF_SIM. Generally speaking, these two steps must 
be reiterated (with different training parameters) until 
the obtained model exhibit a desired quality. Finally, 

the model was incorporated within the structure of 
the predictive controller via the NF_CON block. The 
Simulink diagram used for the closed-loop tests of 
the neuro-fuzzy predictive controller is presented in 
Fig. 7. The parameters required by the control 
algorithm (minimum prediction horizon N1 = 1, 
prediction horizon N2 = 3, control horizon Nu = 2, 
weight factor λ = 0 and initial input uinit = 0) were set 
by means of the dialog box of the NF_CON block. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 7. Simulink diagram used for testing the   
predictive control of the considered plant 
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ig. 8. Comparative plots of the controlled plant 
utput (dashed line) and of the reference trajectory 
ull line) in case on unconstrained control action: a. 
iecewise linear reference signal; b. sinusoidal 
ference trajectory. 

ig. 8 reproduces the results of a test when a neuro-
zzy model was used by the predictive controller. 
oth figures prove a good tracking of the reference 
ajectory. 
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b. 
Fig. 9. Plot of the control action in case of: a. 
piecewise linear reference signal; b. sinusoidal 
reference trajectory. 
 

 
 
 
 
 
 
 
 
 
 

b. 
Fig. 11. Plot of the constrained control action (-0.3; 
0.3) in case of piecewise linear reference signal (a) 
and of the constrained control action (-0.4; 0.4) in 
case of sinusoidal trajectory. 
 
 
 
 
 
 
 
 
 
 
 
 
 

a. 

In case of high values for the amplitude or constraints 
for the control action the results are not satisfactory 
as the output cannot follow the reference in the low-
frequency area, as presented in Fig. 10. 
 
In this case study, when a neuro-fuzzy model is used, 
the results obtained by the predictive controller, are 
comparable with the results obtained in case of 
neural models (e.g. Kloetzer and Pastravanu, 2004), 
but the first one has a slight advantage as it is more 
complex than the neural model. Thus it can capture 
certain nonlinearities, which cannot be observed by 
the neural model. 
 
 
 
 
 
 
 
 
 
 
 
 

b. 
Fig. 10. Comparative plots of the controlled plant 
output (dashed line) and reference trajectory (full 
line) in case of constrained control action (-0.3;0.3) 
for a piecewise linear reference signal (a) and in case 
of constrained control action (-0.4;0.4) for a 
sinusoidal reference trajectory (b). 

 

 
 

 
 

5. CONCLUSIONS 
 

We have developed a Simulink library that provides 
tools for identification, simulation and controller 
design based on neuro-fuzzy models. The 
exploitation of these tools is fully compatible with 
the "drag and drop" technique specific to Simulink 
and allows the user to focus on the Control 
Engineering problems, by getting rid of the 
traditional programming tasks. The newly created 
blocks are easy to handle and versatile, permitting the 
selection of various options for the model 
construction and the control strategy. The 
implementation of the blocks relies on functions 
available in MATLAB and its toolboxes, fact which 
ensures the robustness of the software.  



The considered case study proves the utility of the 
Simulink blockset in developing accurate neuro-
fuzzy models that can be successfully incorporated 
within predictive control schemes. 
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