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Abstract: The paper presents one approach to design of controllers for time delay systems. 
The proposed method is based on the time delay Padé approximation. The controllers are 
derived using the polynomial approach and LQ control technique. Resulting proper and 
stable controllers obtained via polynomial Diophantine equations and spectral 
factorization techniques ensure setpoint tracking as well as load disturbance attenuation. 
The procedure is developed for stable and unstable first order time delay systems and the 
results are verifyed by simulations in MATLAB – Simulink. 
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1  INTRODUCTION 

The existence of a time delay in input-output 
relations is a common property of many 
technological processes. Plants with the time delay 
can often not be controlled using usual controllers 
designed without a consideration for a presence of 
the dead-time. The control responses using such 
controllers then tend to destabilize the closed-loop 
system. 
It is well known that as an effective time-delay 
compensator especially for stable systems with long 
time delays, the Smith predictor can be used. 
However, a part of technological processes 
containing a time delay can be unstable, such as 
chemical reactors or bioreactors. Many different 
approaches have been developed to control such 
processes. While some methods issue from several 
modifications of the Smith predictor (De Paor and 
Egan, 1989), (Majhi and Atherton, 1999), (Liu et al., 
2005), other methods employ PI, PD and PID control 
strategies (Rotstein and Lewin, 1991), (Park et al., 
1998) or IMC-based methods (Huang and Chen, 
1997), (Tan et al., 2003).  
The paper presents one approach to control both 
stable and unstable time delay systems based on the 
time delay approximation and the polynomial 
approach, see, eg. (Kučera, 1993), (Grimble, 1994). 
The  principles  of  the  method  have been developed  

for a stable first order time delay system (FOTDS) 
and published in (Dostál et al., 2001a). For an 
unstable FOTDS, the results obtained using first 
order numerator and Padé time delay approximations 
in the 1DOF and 2DOF control system 
configurations were analyzed and compared in 
(Dostál et al., 2001b). The results demonstrate the 
priority of the Padé approximation to the numerator 
approximation together with a utilization of the 
2DOF configuration. The method presented here is 
based on the above combination. For tuning of the 
controller parameters, the LQ control technique is 
employed, see, e. g. (Dostál and Bobál, 1999).  
Resulting stable and proper controllers obtained via 
polynomial Diophantine equations and spectral 
factorization technique ensure asymptotic tracking of 
step references as well as step load disturbance 
attenuation. Even though any method based on a time 
delay approximation cannot guarantee the control 
system stability in general, the simulation results 
document a usability of the proposed method 
providing stable control responses of a good quality 
also for higher values of the time delay. 

2  APPROXIMATE TRANSFER FUNCTIONS 

Consider the transfer functions of stable and unstable 
first order time delay system having the form 
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where K  > 0 is the gain, τ > 0 is the time constant 
and τd > 0 is the time delay. The time delay transform 
is approximated by the Padé approximation 
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Using approximation (3), approximate transfer 
functions take forms 
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              and τd ≠ 2τ . 
 
Both approximate transfer functions (4) and (5) are 
strictly proper transfer functions  
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where b and a are coprime polynomials that fulfill 
the inequality ab degdeg < . 

3  CONTROL SYSTEM DESCRIPTION 

The 2DOF control system configuration is depicted 
in Fig. 1. Here, a controller contains next  to the  
feedback part Q  also the  feedforward  part R. In the  
scheme, w is the reference signal, v  is the load 
disturbance, y is the controlled output and  u is the 
control input.  Both w and v  are considered  to be 
step functions. The transfer function of the controlled 
system G  represents one from approximate transfer 
functions GA .  
For the stepwise reference and the step load 
disturbance, both controller parts contain an 
integrator and their transfer functions can be found in 
the form of polynomial fractions  
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Fig. 1. 2DOF control system configuration. 
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where q, r, p are polynomials in s.  

4  APPLICATION OF POLYNOMIAL METHOD 

The controller design described in this section 
follows from the polynomial approach. The general 
conditions required to govern the control system 
properties are formulated as follows: 

 Strong stability of the control system (in addition 
to the control system stability, also the controller 
stability is required). 

 Internal properness of the control system. 
 Asymptotic tracking of the reference. 
 Load disturbance attenuation. 

 The procedure to derive admissible controllers can 
be carried out as follows: 
A  feedback controller given by a solution of the 
polynomial Diophantine equation 
 )()()()()( sdsqsbspssa =+  (8) 

with a stable polynomial d on the right side ensures 
the control system stability and the load disturbance 
attenuation. 
A stable polynomial p(s) in denominators of (7) 
ensures the controller stability.  
Asymptotic tracking of the step reference is provided 
by the controller feedforward part given by a solution 
of the polynomial Diophantine equation 
 )()()()( sdsrsbsst =+  (9) 

where t(s) is an auxiliary polynomial which does not 
enter into controller design but which is necessary for 
calculation of equation (9).  
The control system satisfies the condition of internal 
properness when the transfer functions of all 
components are proper. The degrees of the controller 
polynomials then must fulfill inequalities 
 1degdeg +≤ pq ,  1degdeg +≤ pr . (10) 

Taking into account (10), the condition deg b ≤ deg a 
and a solvability of (8) and (9), the degrees of 
polynomials q, p and r can be derived as 
 aq degdeg = , 1degdeg −≥ ap , 0deg =r . (11) 

The controller parameters then follow from solutions 
of polynomial equations (8) and (9) and depend upon 
coefficients of the polynomial d. Now, the next 
problem means to find a stable polynomial d that 
enables to obtain the acceptable stabilizing and stable 
controllers.  

5  LQ CONTROL TECHNIQUE 

In this section, the polynomial d is considered as a 
product of stable polynomials g and n in the form 



 )()()( snsgsd = . (12) 

The first polynomial g is obtained by spectral 
factorization 

 ( ) ( ) )()()()()()( sgsgsbsbsassas ∗∗∗ =+ϕ  (13) 

where the asterisk denotes a conjugate polynomial. 
Remark: It is well known from the LQ control theory 
that the polynomial g is used to minimization of the 
quadratic cost function 
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where )(te  is the tracking error, )(tu& is the control 
input derivative and ϕ > 0 is the weighting 
coefficient. 
The second polynomial n, ensuring properness of the 
controller, is given for a stable FOTDS as 
 )()( sasn = . (15) 

For an unstable FOTDS, this polynomial is 
determined in two different ways. 
In the first case, this polynomial is given as a stable 
part of spectral factorization 

 )()()()( sasasnsn ∗∗ = . (16) 

Then, the procedure leads to a strictly proper 
controller. The degree of d on the right sides of (8) 
and (9) is given as  

[ ] 1)(deg2)()(deg)(deg +== sasnsgsd .  
Taking into account (11) and the relation 

[ ] 1)(deg)(deg)(deg)(deg +=−= sasasdsps , strict 
properness of  (7) is evident. 
In the second case, the polynomial n is chosen as a 
stable part of the polynomial a  
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Now, the procedure leads to a nonstrictly proper 
feedback part of the controller. Since 
equalities [ ] )(deg2)()(deg)(deg sasnsgsd ==  and 

[ ])(deg sps  )(deg)(deg)(deg sasasd =−=  hold, 
Q(s) in (7) is nonstrictly proper.  
A preference of such determination of polynomial d 
lies in the fact that all controller parameters can be 
tuned by only single selectable parameter. Taking 
into account that all parameters except ϕ in (13) are 
given by properties of the controlled system, the 
coefficients of g depend upon single selectable 
parameter ϕ. Since polynomial n does not contain 
any selectable parameters, also the coefficients of 
polynomial d, and, the controller parameters given by 
solutions of (8) and (9) depend next to fast given 
parameters K, τ and τd  only upon ϕ. 

6  CONTROLLER DESIGN 

For   both   stable   and   unstable  FOTDS,   normed  

polynomial g has the form 
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with coefficients 
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In behalf of shortness of the writing, other important 
equations and derived formulas for considered 
systems are introduced in the form of tables in the 
following order: 

− Form of used polynomial n. 
− Formulas for computation of coefficients n. 
− Transfer functions of the resulting controller. 
− Formulas for computation of controller 

parameters. 
− Condition of the resulting controller stability. 
 

Tab. 1. Stable FOTDS 
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Tab. 2. Unstable FOTDS – Strictly proper controller 
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Tab. 3. Unstable FOTDS – Nonstrictly proper 
feedback part of the controller 
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7  EXAMPLES 

All simulation experiments in this section were 
performed by MATLAB-Simulink tools. In all cases, 
the reference signal w(t) = 1(t) was used.  
 

7.1  Stable FOTDS 

Consider a stable first order time delay system with 
transfer function (1) where K = 1 and τ = 4. In 
realized simulations, the step disturbance v(t) = – 0.2 
was incorporated into the controlled system at time tv. 
The values of tv may be seen below each figure. The 
step reference and load disturbance responses for τd = 
4 (τd = τ), and τd = 12 (τd = 3τ) and  τd = 24 (τd = 6τ) 
are shown in Figs. 2, 3 and 4.  The responses in all 
figures clearly document an effect of the parameter ϕ 
upon the control responses. An increasing ϕ 
improves the control stability and by choosing of its 
higher value aperiodic responses can be obtained. 
The responses in Fig. 5 demonstrate the robustness of 
the proposed method against changes of τd . The 
controller parameters were computed for a nominal 
model with τd = 24 and subsequently used for 
perturbed models with the  ± 20% estimation error in 
τd value (τd = 28.8 and τd = 19.2).  

7.2  Unstable FOTDS 

Let in transfer function (2) K = 1 and τ = 4. The 
responses for τd = 2 (τd /τ = 0.5) are shown in Fig. 6. 
These document a control of good quality by both 
strictly and nonstrictly controllers for a small value  

τd. The responses to the step load disturbance using 
both controllers are compared in Fig. 7. These show 
that a nonstrictly controller gives approximately half-
length overshoot. Such as in the above case, an effect 
of parameter ϕ upon the control responses is shown 
in Figs. 8 and 9. Again, it can be seen that an 
increasing value of ϕ results in aperiodic responses 
without overshoots during tracking as well as during 
disturbance attenuation. Responses for τd = 5 (τd /τ = 
1.25)  are shown  in Fig. 10.  Especially,  the setpoint 
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Fig. 2. Step reference and load disturbance responses 

(τd = 4, tv = 50). 
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Fig. 3. Step reference and load disturbance responses 

(τd = 12, tv = 110). 
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Fig. 4. Step reference and load disturbance responses. 

(τd = 24, tv = 200). 



responses without any overshoot document the 
usability of the proposed method. Note that for 
instance De Paor and Egan’s method (1989) provides 
stable setpoint responses for τd /τ < 0.5163 and Majhi 
and Atherton (1999) require this ratio as τd /τ < 1. 
Simulation results in Fig. 11 show a robustness of the 
method. Here, a nominal model with the  exact value  
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Fig. 5. Nominal and perturbed system responses (τd = 

24 (1) ,28.8 (2), 19.2 (3), ϕ = 400, tv = 220). 
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Fig. 6. Step reference and load disturbance responses 

for nonstrictly (1) and strictly (2) proper 
controller (τd = 2, ϕ = 25, v = - 0.1, tv = 50). 
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Fig. 7. Step load disturbance responses for nonstrictly 

(1) and strictly (2) proper controller (τd = 4, ϕ = 
100, v = 0.1, tv = 0). 

τd = 3 (τd /τ = 0.75) has been used for a  ± 10% 
estimation error in τd (τd = 3.3 and τd = 2.7). The 
responses demonstrate a sufficient robustness of the 
controller also for a relatively higher ratio between τd 
and τ, though the sensitivity to an estimation error in 
τd  grows up according to an increasing ratio τd /τ . 
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Fig. 8. Nonstrictly proper controller: Step reference 

and load disturbance responses (τd = 3, ϕ = 25 
(1), 100 (2), 400 (3), v = - 0.1, tv = 150). 
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Fig. 9. Nonstrictly proper controller: Step setpoint 

and load disturbanceresponses (τd = 4, ϕ = 25 (1), 
100 (2), 400 (3), v = - 0.1, tv = 150). 
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Fig. 10. Nonstrictly proper controller: Step reference 

and load disturbance response (τd = 5, ϕ = 1600,  
v = - 0.1, tv = 250). 
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Fig. 11. Nominal and perturbed system responses   

(τd = 3 (1), 3.3 (2), 2.7 (3), ϕ = 400, v = - 0.1, tv = 
150). 

8  CONSLUSION 

The problem of control design for stable and unstable 
time delay systems has been solved and analyzed. 
The proposed method is based on the first order Padé  
time delay approximation. The controller   design  
uses   the    polynomial method   and   a controller 
setting employs results of the LQ control theory. The 
presented procedure provides satisfactory control 
responses in the tracking of the step reference as well 
as in step load disturbance attenuation. The presented 
results have demonstrate the usability of the method 
and the control of a good quality for relatively high 
ratio between the time delay and the time constant (τd 
/τ ≈ 6 for a stable and τd /τ ≈ 1.25 for an unstable 
FOTDS). The procedure makes possible a tuning of 
the controller parameters by a single selectable 
parameter. Using derived formulas, the controller 
parameters can be automatically computed. From this 
reason, the method could also be used for an adaptive 
control.  
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