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Abstract: In this section we consider systems with multiple delay in command and
saturation in command, and using a transformation given in (Artstein, 1982), the initial
system is transformed in one without dealy but which contain saturation in command.
The investigations are continued using some results from the study of systems with
saturation in command (Lee and Hedrick, 1995). In this manner, using the transformation
relation between the state of the initial system with delay and the state of the
transformated system without delay, we can formulate some results regarding the
stabilization of the initial system with multiple delay and saturation in command. The
Propositions 1..6 from this paper are personal results of the author.
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1. INTRODUCTION

A general method for transformation of systems with
delay in command is presented in (Artstein, 1982). In
that paper is demonstrate how many problems of
stabilization, controllability, and optimization can be
dealt with by addressing the reduced (associate)
systems. The reduction provides, therefore, a strong
tool for manipulating systems with delays in the
controls.

In (Lee and Hedrick, 1995) are presented some
necessary and sufficient conditions for global
asymptotic stability of linear systems with bounded
control.

Starting from these, although in practice, control
bounds and delayed are usually ignored in the initial
design, the aim of this paper is to find under what
conditions will the equilibrium of a system with
multiple delay in command and saturation in
command, remain globally asymptotically stable.

In this paper are presented results about stability,
instability and a estimation of stability region for
considered systems. The Propositions 1..6 from this
paper are personal results of the author. Similar

results about systems with delay in command and
saturation in command, systems with delay in state
and command and saturation in command, systems
with multiple delay in state and command and
saturation in command and systems with distributed
delay in state and command and saturation in
command, are presented by author in (Nicola, 2004a;

Nicola, 2004b; Nicola, 2004c¢).
2. MAIN RESULTS

We consider the monovariable system in the
following form :

k
X(t) = Ax(t) + Bous(t)+ZBius(t—hi), (1)

i=1
where xeR" is the state, h;, i=1..,k are the
delays in command, A,B;,B; are matrices of
appropriate dimensions. The initial conditions of
command are given by a function Ug,(-) definited on

the interval [-h,0], where h=max{h,,....h,}, and



bounded by uj,,. The command contain saturation

and is in the general form :

Us () = —sat(Kx(t)) = —u(x(0))Kx(1), 2
1 if |KX| < Uiy

where £(X) =14 Ujim if |KX|>U~ , 3)
|KX| = Hlim

Uy, 1s the maxim value of command, |us|£ Ujim »

K is a feedback matrix.
Let the system (1), and use the state transformation
(Artstein, 1982) :

Kk t
yO=x0+), [ Busds @)
i=l ¢
where A is the matrix of the initial system. (5)
Wenote : s=t+86, and comupting Y , we obtain

k
y(t) = AX(t) + By, (t) + z Bu,(t—h)+
i=1
k O
£y Ie‘A(9+h')Bius(t +0)do
i=1 —h;
0
j e ACIB L (t+6)d0 = e AOMBUY (t+6) ) +
—h;

0
+ J'Ae‘A”*“i Bug(t +0)d0 =
—h;

0
=e AN Bug(t) - Bjug(t—hy) + J‘Ae’A(mhi)Bius(t +0)do
—h,
Observing that the sum formed by the last integral of
each up terms is equal A(Yy(t) —x(t)), making the
replacement up, we obtain the associate system :

k
y(t) = Ay®) +(By + Y e M Bus (1) (©6)

i=1
We make the notation :

k
B=B,+» e "B, (7
i=1
We suppose that the comand of (1) contain saturation
and is in the form :

k 0
Uy () = —(X(t) + Ie’A(9+hi)Bius(t +0)dO)K -
i=1 -h,
k O
1 x)+ j e ARy (t+6)do )
i=1 _p
where :

k O

ux+y je"““hﬂ Byu, (t +6)d0) =
i=l _p

=1 if

K 0
K(x+ Z Je‘A(‘g*hi)Bius(t +0)d0)| <y,
i=1 —h;

Ujim

K 0
Koty j e AOMBY (t+0)d0)
i=l _p

if

K(X+

e MOMBU (t+0)d0) > Uy, (9)

—_—c

k
=1

=y

Uim 1S the maxim value of command, |u5| S Ui »

K is a feedback matrix.
We reconsider the monovariable associate system (6)

y(t) = Ay(t) + Bug (t), (10)
where ye®R" is the state, A B are matrices of

appropriate dimensions. The command of this system
contain saturation and is in the form :

us (t) = —sat(Ky) = —u(y()Ky(t),  (11)

1 if

where x(Y) =1 Ujim_ if
[Ky]

Uim 1S the maxim value of command, |Us| <Ujim »

|KY| < Uiy

|Ky| 2 Uy (12)

K is a feedback matrix.
Observation 1 : In (Artstein, 1982) is claimed that :
if u(t)=F()y() is a stabilyzing law for system
(10), then the next command law :
k O
u®)=F O X+ je’A(g*hi)Biu(HH)dH (13)
i=l _p,

is stabilyzing for the system (1).

Definition 1 : Let A; e R™". A set {A,.., A} is
simultaneously P Liapunov stable , if there exists a
PeR™, pozitive definite, such  that
AiT P+PA <0, i=L..,k.(Lee and Hedrick, 1995)
With these we claim :

Proposition 1 : The null solution of closed loop
system (1), (8) and (9) is globally asimptotically
stable if there exist K and PeR™" pozitive
definite, such that the set

i=1

k
{A,A—(BOJrZe‘Ah' Bi)K} is simultaneously P

Liapunov stable, namely : ATP + PA<0 and
k k

(A—(By + Ze‘Ahi B)K) P+ P(A— (B + Ze‘Ahi B)K) <0
= it

Proof : We use a result from (Lee and Hedrick,
1995), given by



Theorem 1 : The null solution of closed loop system
(10), (11) and (12) is globally asimptotically stable if

there exist K and P € R™", pozitive definite, such
that the set {A,A-BK} is simultaneously P

Liapunov stable, namely ATP+PA<0 and

(A-BK)"P+P(A-BK)<0

Proof of Theorem 1 : Let consider the Lyapunov

function : V(y) = yT Py, and the matrix P >0 who

satisfy the hypothesis. With these we obtain :
y"(ATP+PA)y=-y"Qy<0 and

Yy (A=BK) P+P(A-BK))y=-y"Qy+y My<0

where Q>0 and M =—(PBK +K'B'P).

Then one obtains Y My < y'Qy. As u(y) e (0,1] it

follows that :

V(y)=-y"Qy+u(y)y"My <-y Qy+u(y)y' Qy<

< —yT Qy + yT Qy =0, and the proof of Theorem 1

is finished. |

Applying the Theorem 1 on the system (10), where
A and B are given by (5) and (7) respectively,
using the Observation 1 where F(-)=-u(y)K and
y is given by (4), then the proof of Proposition 1 is
finished. o

Definition 2 : Two diagonalizable matrices

ABeR™, are said to be simultaneously
diagonalizable if there exists a single non-singular

matrix N such that N"'AN and N7'BN are both
diagonal. (Lee and Hedrick, 1995)

Lema 1 : Let A and B be diagonalizable from

R™. Then A and B are simultaneously
diagonalizable if and only if A and B commute

under multiplication, namely AB =BA. (Lee and
Hedrick, 1995)

Proposition 2 : The null solution of closed loop
system (1), (8) and (9) is globally asimptotically
stable if are true:

a) the open-loop system A is exponentially
stable and diagonalizable

k
b) the matrix A—(By+ Y e MB)HK s
i=1
exponentially stable and diagonalizable

K
c) the matrices A and (BO+Ze‘Ahi B,)K
i=1
commute under multiplication

Proof : We use a result from (Lee and Hedrick,
1995), given by

Theorem 2 : The null solution of closed loop system
(10), (11) and (12) is globally asimptotically stable if
are true :

a) the open-loop system A is exponentially
stable and diagonalizable

b) the matrix A—BK is exponentially stable and
diagonalizable

¢) the matrices A and BK commute under
multiplication

Proof of Theorem 2 : Since A and BK commute,
then A and A-BK commute. By assumption, A
and A—BK are also diagonalizable. Thus from

Lema 1.1, A and A-BK are simultaneously
diagonalizable. Thus, there exists a coordinate
transformation T such that A and A—BK are both
diagonal with respect to a new coordinate z=Ty.

Let A=A-BK and let Ay,A; be diagonal

Ap=TAT,
Az =T(A- BK)T ~'. Then we proof that P =T'T

satisfies the conditions of Theorem 1.

2A 4 =TAT '+ (TAT™)T | and multiplying the left

side by T ' and the right side by T , we obtain :
2TTALT =TT AAT L+ AT )T =TTTA+ ATTTT =
=PA+ATP where P=TTT>0 and TTA,T <0

since T is non-singular.
Similarly : 2TTA;T =T TA+ATT'T.

matrices where

Thus, P simultaneously satisfies ATP+PA<0 and

ATP+PA<O. By Theorem 1, the proof of
Theorem 2 is finished. o

Applying the Theorem 2 on the system (10), where
A and B are given by (5) and (7) respectively,
using the Observation 1 where F(-)=-u(y)K and

y 1is given by (4), then the proof of Proposition 2 is
finished. o

A analog result is given by :

Proposition 3 : The null solution of closed loop
system (1), (8) and (9) is globally asimptotically
stable if are true:

k

a)A and A—(B, + Z g AN B;)K are exponentaially
i=1

stable

b) A—(B, + Zk:efAh‘ B;)K is diagonalizable
i=1
c) A commutles with P, where A is the diagonal
form of A—(B, +Zk:e‘A“' B;)K ,and P >0 solves :
=1
ATP+PA<0. |



Proof : We use a result from (Lee and Hedrick,
1995), given by

Theorem 3 : The null solution of closed loop system
(10), (11) and (12) is globally asimptotically stable if
are true :

a) Aand A-BK are exponentaially stable

b) A— BK is diagonalizable

c) A commutes with P , where A is the diagonal
form of A~ BK, and P >0 solves: ATP+PA<0.

Proof of Theorem 3 : Let A=T(A-BK)T ! where
T diagonalizes A—BK and A is diagonal in the
new coordinate Z =TX.

Also let A=TAT'. Since A is exponentially
stable, there exists P >0 such that ATP +PA < 0.
Since A<0 and P >0, all eigenvalues of AP are
less than zero. Also, by assumption, AP =PA,
AT = A wich implies that A"P+PA<0. By
Theorem 1, the proof of Theorem 3 is finished. ©

Applying the Theorem 3 on the system (10), where
A and B are given by (5) and (7) respectively,
using the Observation 1 where F(-)=-u(y)K and

y is given by (4), then the proof of Proposition 3 is
finished =

For multivariable systems we present the next result :

Proposition 4 : We consider the system (1) in the
multivariable form :

k
)'((t):Ax(t)+Bous(t)+ZBius(t—hi), (14)

i=1
where xeR" is the state, h,, i=1..,k are the

delays in command, A,B,,B; are matrices of

appropriate dimensions, U € R™.

We note B’

k
j the jth column of B, +Z:e_Ahi B;

i=1
and we assume that A is asymptotically stable. The
,usm]T s Umaj 18 the

maxim value of the component jth of command

inputs are Uy :[usl,

namely |Usj| <Umaxj>J=L...m.  The initial

conditions of commands are given by a set of
functions Ug;(-) definited on the interval [-h,0],

where h=max{h,,....h}, and bounded by u

max j *

The components of command are in the form :

kK O
ug=-BP(x+Y je‘A(‘9+h')Biusj (t+6)do)
i=1 _h

if

k O
BTP(x+ Y. je“‘”*hi)Biusj (t+0)do) <u
i=l _p

max j

k O
Ug = ;BT PO+ je—A(9+hi>Biusj (t+0)do)

i=l _p,
if
k O
BT P(x+ je*A(““i)Biusj(tW)da > U
i=l _p,
(15)
where
u .
K= max J j=1...m
k O
B} P(x+ Z I e AP B (t+6)dd
i=1 —h;
(16)

If P>0 solves ATP+PA<0, then the null solution
of closed loop system (14), (15) and (16) is globally
asimptotically stable.

Proof : We use a result from (Lee and Hedrick,
1995), given by

Theorem 4. We consider the multivariable system in
the following form:

m
y:Ay+BuS:Ay+ZBiusi (17)
i=1
where : ye R",u; e R™, Ae R™ is asymptotically
stable, Be R™™, B; is the ith column of B. The

inputs are Ug = [usl, ,Ugm ]T, Unaxi 18 the
maxim value of the component ith of command

=1,...,m.

namely |usi| <Uppaxis |

The command vector Ug :—Sat(BT Py), have the
components in form :

_BIT Py > ‘BlT Py‘<umaxi
usi = T T ’
— 1By Py ; ‘Bi Py‘zumaxi
(18)
where 1 = ‘;‘;a;' , i=1..m, (19)
i Y‘

If P>0 solves ATP+PA<0 , then the null solution
of closed loop system (17), (18) and (19) is globally
asimptotically stable.

Proof of Theorem 4 : We can rewrite the command
vector : Ug = ~-MB' Py,

where : M =diag(s;),M e R™", 8, €(0,]]  and



5 1 if ‘B,T Py‘ Ui
i = .

Hi if ‘BlT Py‘zumaxi
Let consider the Lyapunov  function

V(y)=y' Py and computing V(y), we obtain :
V(y)=y [(A-BMB"P)" P+P(A-—BMB'P)]y =
=y (ATP+PA-2PBMB'P)y <0 since

PBMB'P >0 and ATP+PA<0. Thus the proof of
Theorem 4 is finished. O

Applying the Theorem 4 on the system (10)
considered now multivariable, where A and B are
given by (5) and (7) respectively, using the
Observation 1 where F(-)=—MB'P and y is given
by (4), then the proof of Proposition 4 is finished. O

The next two propzitions are concerning on the open
loop unstable monovariable linear systems.

Proposition 5 : We consider the system (1) and
suppose A is invertible and has a single unstable

K
cigenvalue 1. Let Xeq =+A™ (By + > e "B, )uy,
i=1
denote the equilibrium points of the saturated system
when the input saturates at Uy = —Uy;,, and Ug = Uy,

respectively. Then, no feedback matrix K where
|Kxeq| 2 Uy, , can globally stabilize the null solution

of closed loop system (1), (8) and (9).

Proof : We use a result from (Lee and Hedrick,
1995), given by

Theorem 5 : We consider the system (10) and
suppose A is invertible and has a single unstable

eigenvalue 4. Let Y =iA’1BuHm denote the

equilibrium points of the saturated system when the

input saturates at Ug =-Uy, and Ug =Uy,
respectively. Then, no feedback matrix K where
|Kyeq|2 Ujim » can globally stabilize the null solution

of closed loop system (10), (11) and (12).

Proof of Theorem 5 : To show that the origin is not
globally asymptotically stable, it is sufficient to find

some initial conditions Yy, € R" wich cannot be

driven to the origin with the feedback :
Ug (t) = —sat(Ky) = —u(y(t))Ky(t) where K satisfy

|Kyeq| 2 Ujim -
Let E;(ye) be the eigenspace corresponding
ty(t) e E;(Yeq) (N Do the unstable eigenvalue 1 of

the open-loop system A where :

E,(Yeq) = Y € R AY — Vo) = (Y = Yeq)| (20)

We will show that some initial conditions on the

eigenspace E,; cannot be driven to the origin with
the feedback u (t) = —sat(Ky).
Note that |Ky| =Ujim

depicts the saturation

boundaries. Now consider the case when saturation
occurs with Ug =—Uy, . Then, the dynamics of the

saturated system are given by :

y(®) = Ay(t) - Buy, , (2]
and the equilibrium point under saturation by :
Yeq =A™ Buyy, (22)

Let D= {y : |Ky| 2 Ujim } The  assumption

|Kyeq| > Uy, implies Yeq € D. Then the trajectory
y(t) for the saturated system when y, € E;(Y¢q) is
given by :

Y(®) =" (Yo = Yeq) + Yeq: (23)

Moreover, since E; (Yyq) is the eigenspace, provided
the system remains saturated at Ug = —Uy;,, . We will
show that some initial conditions y, € E; N D exist
where Y(t) never leaves the saturated region D so
that |y(t)| becomes unbounded.
Now, E; is either parallel to or intersects Ky = Uy, .
Because Ky=uy, forms an n-1 dimensional
surface and E;(y.) a line, the intersection is a
point. Suppose E;(Yq) and Ky =uy, are parallel.
E)(Yeq)
saturated region. This means that
VYo €E;(Yeq)s Y €E;(Yeq), VE20.

Since E;(Yeq) is an unstable eigenspace, |y(t)| will

Since  ygq €D, lies entirely in the

become unbounded.
Now suppose E;(Yeq) and Ky =uy, intersect. Let

V" denote the point of intersection. Then
VYo € E;(Yeq)1D such that |y0| > max(jv* yeq|),
y(t) € E;(Yeq)ND, t20 and |y(t) will become

unbounded.
The same argument can be repeated for saturation
occurring at Ug =Uy,, . Thus, there exist initial

>

conditions on the eigenspace corresponding to the
unstable eigenvalue which becomes unbounded.
Hence, the origin is not globally asymptotically
stable under any linear time invariant state feedback.
Thus the proof of Theorem 5 is finished. |

Applying the Theorem 5 on the system (10), where
A and B are given by (5) and (7) respectively, and
using the transformation relation given by (4), then
the proof of Proposition 5 is finished. ]
The next proposition examines the region of stability
for an open loop unstable system under control
constraints and delay in state and control.



Proposition 6 : We consider the system (1) and
suppose the following are true :
a) matrix A is unstable.

K
A-(By+ Y e MBHK s
i=1

b) matrix

exponentially stable.
Let

T
0

k
B ={x: x(t)+zje‘A(g+hi)Bius(t+9)d€ P.
i=l _p

kK O
: x(t)+zje‘A<9+hi)Bius(t+6)d9 <dl,
i=1 —hy

d eR, and

k O
H* = Ix: K(x(t)+z '[e*Aw*hi)Bius(tJre)da) < Ugin b s
i=1 _p,

where P >0 is a solution to :
k k

(A—(By + Ze*Ahi B)K)T P+ P(A— (B + Ze*Ahi B)K) <0
i=1 i=1

Then B;* is an exponentially stable region for the
closed loop system (1), (8) and (9), where d * is the
largest number such that B;* cH".

Proof : We use a result from (Lee and Hedrick,
1995), given by

Theorem 6 : We consider the
suppose the following are true :

system (10) and

a) matrix A is unstable.
b) matrix A—BK is exponentially stable.

Let By :{y:yTPysd}, deR,

and H = {y : |Ky| < ulim}, where P >0 is a solution
to (A- BK)T P+ P(A-BK)<0. Then Bd* is an
exponentially stable region for the closed loop
system (54), (55) and (56), where d” is the largest

number such that B & H.

Proof of Theorem 6 : Since A— BK is exponentially
stable, there exist P>0, such that

(A—-BK)"P+P(A-BK)<0. Let consider the
Lyapunov function : V(y) = yT Py, and computing
V(y) we

V(y)=y [(A-BK) P+ P(A-BK)]y<0.

obtain

In addition, B 4 is the largest set wich lies within the

unsaturated region H . Thus VyeB 0 yT Py

decreases and hence |y| — 0 exponentially. Thus the

proof of Theorem 6 is finished. i
Applying the Theorem 6 on the system (10), where
A and B are given by (5) and (7) respectively, and
using the transformation relation given by (4), then
the proof of Proposition 6 is finished. O

3. CONCLUSIONS

In this paper we consider systems with multiple delay
in command and saturation in command, and using a
transformation given in (Artstein, 1982), the initial
system is transformed in one without dealy but which
contain saturation in command. The investigations
are continued using some results from the study of
systems with saturation in command (Lee and
Hedrick, 1995). In this manner, using the
transformation relation between the state of the initial
system with delay and the state of the transformated
system without delay, we can formulate some results
regarding the stabilization of the initial system with
multiple delay and saturation in command.

Are presented results about stability, instability and a
estimation of stability region for the considered
systems. The Propositions 1..6 from this paper are
personal results of the author. Similar results about
systems with delay in command and saturation in
command, systems with delay in state and command
and saturation in command, systems with multiple
delay in state and command and saturation in
command and systems with distributed delay in state
and command and saturation in command, are
presented by author in (Nicola, 2004a; Nicola,
2004b; Nicola, 2004c¢).
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