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Abstract: In this section we consider systems with multiple delay in command and 
saturation in command, and using a transformation given in (Artstein, 1982), the initial 
system is transformed in one without dealy but which contain saturation in command. 
The investigations are continued using some results from the study of systems with 
saturation in command (Lee and Hedrick, 1995). In this manner, using the transformation 
relation between the state of the initial system with delay and the state of the 
transformated system without delay, we can formulate some results regarding the 
stabilization of the initial system with multiple delay and saturation in command. The 
Propositions 1..6 from this paper are personal results of the author. 
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1. INTRODUCTION 

 
A general method for transformation of systems with 
delay in command is presented in (Artstein, 1982). In 
that paper is demonstrate how many problems of 
stabilization, controllability, and optimization can be 
dealt with by addressing the reduced (associate) 
systems. The reduction provides, therefore, a strong 
tool for manipulating systems with delays in the 
controls. 
In (Lee and Hedrick, 1995) are presented some 
necessary and sufficient conditions for global 
asymptotic stability of linear systems with bounded 
control. 
Starting from these, although in practice, control 
bounds and delayed are usually ignored in the initial 
design, the aim of this paper is to find under what 
conditions will the equilibrium of a system with 
multiple delay in command and saturation in 
command, remain globally asymptotically stable. 
In this paper are presented results about stability, 
instability and a estimation of stability region for 
considered systems. The Propositions 1..6 from this 
paper are personal results of the author. Similar 

results about systems with delay in command and 
saturation in command, systems with delay in state 
and command and saturation in command, systems 
with multiple delay in state and command and 
saturation in command and systems with distributed 
delay in state and command and saturation in 
command, are presented by author in (Nicola, 2004a; 
Nicola, 2004b; Nicola, 2004c). 
 

2. MAIN RESULTS 
 
We consider the monovariable system in the 
following form :  
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where  is the state, ,  are the 
delays in command,  are matrices of 
appropriate dimensions. The initial conditions of 
command are given by a function  definited on 
the  interval 
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bounded by  .  The command contain saturation 
and is in the general form : 
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limu  is the maxim value of command,  limuus ≤ , 
K  is a feedback matrix. 
Let the system (1), and use the state transformation 
(Artstein, 1982) : 
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Observing that the sum formed by the last integral of 
each up terms  is equal  , making the 
replacement up, we obtain the associate system : 
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We make the notation : 
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We suppose that the comand of (1) contain saturation 
and is in the form : 
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limu  is the maxim value of command,  limuus ≤ , 
K  is a feedback matrix. 
We reconsider the monovariable associate system (6)  
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where  is the state,  are matrices of 
appropriate dimensions. The command of this system 
contain saturation and is in the form :  
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limu  is the maxim value of command,  limuus ≤ , 
K  is a feedback matrix. 
Observation 1 : In (Artstein, 1982) is claimed that : 
if )()()( tyFtu ⋅=  is a stabilyzing law for  system 
(10), then the next command law : 
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is stabilyzing for the system (1). 
                                                                                                                 

Definition 1 :  Let . A set   is 
simultaneously P Liapunov stable , if there exists a 

, pozitive  definite, such that 
. (Lee and Hedrick, 1995) 
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With these we claim : 
Proposition 1 : The null solution of closed loop 
system (1), (8) and (9) is globally asimptotically 
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Proof :  We use a result from (Lee and Hedrick, 
1995), given by  



 
Theorem 1 : The null solution of closed loop system 
(10), (11) and (12) is globally asimptotically stable if 
there exist K  and , pozitive definite, such 
that the set {  is simultaneously P 

Liapunov stable, namely  :  and 
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Proof  of Theorem 1 : Let consider the Lyapunov 
function : , and the matrix  who 
satisfy the hypothesis. With these we obtain : 
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Applying the Theorem 1 on the system (10), where 
A  and  are given by (5) and (7) respectively, 

using the Observation 1 where 
B
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finished.                 □  
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Definition 2 : Two diagonalizable matrices 

, are said to be simultaneously 
diagonalizable if there exists a single non-singular 
matrix  such that  and  are both 
diagonal.   (Lee and Hedrick, 1995) 
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Lema 1 : Let A  and  be diagonalizable from 

. Then 
B
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diagonalizable if and only if  

B
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under multiplication, namely 
B

BAAB = .    (Lee and 
Hedrick, 1995) 
 
Proposition 2 : The null solution of closed loop 
system (1), (8) and (9) is globally asimptotically 
stable if are true: 
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Proof : We use a result from (Lee and Hedrick, 
1995), given by 

 
Theorem 2 : The null solution of closed loop system 
(10), (11) and (12) is globally asimptotically stable if 
are true : 

a) the open-loop system A  is exponentially 
stable and diagonalizable 

b) the matrix BKA −  is exponentially stable and 
diagonalizable 

c) the matrices A  and BK  commute under 
multiplication     
 
Proof of Theorem 2 : Since A  and BK  commute, 
then A  and BKA −  commute. By assumption, A  
and BKA −  are also diagonalizable. Thus from 
Lema 1.1,  and A BKA −  are simultaneously 
diagonalizable. Thus, there exists a coordinate 
transformation T  such that A  and BKA −  are both 
diagonal with respect to a new coordinate Tyz = . 
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Applying the Theorem 2 on the system (10), where 
A  and  are given by (5) and (7) respectively, 

using the Observation 1 where 
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A analog result is given by : 

 
Proposition 3 : The null solution of closed loop 
system (1), (8) and (9) is globally asimptotically 
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Proof  : We use a result from (Lee and Hedrick, 
1995), given by 

 
Theorem 3 : The null solution of closed loop system 
(10), (11) and (12) is globally asimptotically stable if 
are true :  
a) A and BKA −  are exponentaially stable 
b) BKA −  is diagonalizable 
c) A
)

 commutes with P  , where A
)

 is the diagonal 
form of BKA − , and  solves : .
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Applying the Theorem 3 on the system (10), where 
A  and  are given by (5) and (7) respectively, 
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For multivariable systems we present the next result : 
 
Proposition 4 : We consider the system (1) in the 
multivariable form : 
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If  solves , then the null solution 
of closed loop system (14), (15) and (16) is globally 
asimptotically stable.  
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Proof  : We use a result from (Lee and Hedrick, 
1995), given by  

 
Theorem 4. We consider the multivariable system in 
the following form: 
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Applying the Theorem 4 on the system (10) 
considered now multivariable, where  A  and  are 
given by (5) and (7) respectively, using the 
Observation 1 where  and  is given 
by (4), then the proof of Proposition 4 is finished.    □ 
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The next two propzitions are concerning on the open 
loop unstable monovariable linear systems. 
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Proof  : We use a result from (Lee and Hedrick, 
1995), given by 
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suppose A  is invertible and has a single unstable 
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Proof of Theorem 5 : To show that the origin is not 
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Applying the Theorem 5 on the system (10), where 
A  and  are given by (5) and (7) respectively, and 

using the transformation relation given by (4), then 
the proof of Proposition 5 is finished.             □ 
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constraints and delay in state and control. 



Proposition 6 : We consider the system (1) and 
suppose the following are true : 

a) matrix A  is unstable. 
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Then  is an exponentially stable region for the 

closed loop system  (1), (8) and (9), where  is the 
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Proof  : We use a result from (Lee and Hedrick, 
1995), given by 
Theorem 6 : We consider the  system (10) and 
suppose the following are true : 

 
a) matrix A  is unstable. 
b) matrix BKA −  is exponentially stable.  
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Proof of Theorem 6 : Since BKA −  is exponentially 
stable, there exist , such that 
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Applying the Theorem 6 on the system (10), where 
A  and  are given by (5) and (7) respectively, and 

using the transformation relation given by (4), then 
the proof of Proposition 6 is finished.                       □ 
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3. CONCLUSIONS 

 
In this paper we consider systems with multiple delay 
in command and saturation in command, and using a 
transformation given in (Artstein, 1982), the initial 
system is transformed in one without dealy but which 
contain saturation in command. The investigations 
are continued using some results from the study of 
systems with saturation in command (Lee and 
Hedrick, 1995). In this manner, using the 
transformation relation between the state of the initial 
system with delay and the state of the transformated 
system without delay, we can formulate some results 
regarding the stabilization of the initial system with 
multiple delay and saturation in command. 
Are presented results about stability, instability and a 
estimation of stability region for the considered 
systems. The Propositions 1..6 from this paper are 
personal results of the author. Similar results about 
systems with delay in command and saturation in 
command, systems with delay in state and command 
and saturation in command, systems with multiple 
delay in state and command and saturation in 
command and systems with distributed delay in state 
and command and saturation in command, are 
presented by author in (Nicola, 2004a; Nicola, 
2004b; Nicola, 2004c). 
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