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Abstract: Practical applications concerning heat 
transfer (e.g. heat propagation along wires) require 
representations based on superior degree algebraic 
equation or equations with partial derivatives. This 
paper deals with certain aspects concerning symbolic 
or numeric methods used to solve this type of 
equations. The practical engineering applications that 
have generated the mathematical problems do not 
represent the interest point of this paper. It focuses on 
the mathematical representation and on the way this 
representation can lead to results. Few aspects of 
programming implementation are included.  

 
Keywords: applied mathematics, heat transfer, 
algebraic equation, equations with partial derivatives 
 

 
1. MATHEMATICAL ISSUES 
 
Ignoring the practical issues of the engineering 
applications concerning the heat transfer, we will focus 
on two main mathematical problems that involve 
finding certain solutions using either symbolic or 
numerical calculation. 
 
For each and every issue the description of the initial 
conditions and of the requirements to be fulfilled, are 
presented clearly enough as to support a good 
understanding of the problems. 
 
1.1 Solving a Heat Differential Equation 
 
The heat differential equation (Lienhard 2001) is: 
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where T is a function of x and the initial conditions are 

1)0( TT =  and 2)( TlT = ,  l is the length of the 
conductor heated from both ends.  
 
There are three cases (Betounes 1998; Teodorescu 
1980): 
1. 01 >k  

                                                 
•  The results included in this paper are a part of the work done by 
the author in a SOCRATES ERASMUS grant to the Universitat 
Bundeswehr in Munich, under the co-ordination of Prof. H. D. Liess. 

2. 01 =k  
3. 01 <k  
 
�  The case 01 >k  
 
Denoting 
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Knowing that 01 >k  then Rv ∈∃ , such that 1

2 kv = . 
The equation (2) then becomes: 
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Then the solution for Y(x) is:  
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Taking into consideration the initial conditions (Tveito 
1998) it results that: 

 

21
1

2
1)0( cc

k
kTY +=−=               (5) 

and  
 

vlecec
k
kTlY

vl ⋅−⋅+⋅=−= 21
1

2
2

.
)(               (6) 

 
So 
 

1

2
121 k

kTcc −+−=                (7) 

 

1

2
22

1

2
1 )(

k
kTeece

k
kT vlvlvl −=−+⋅








− ⋅⋅−⋅

 
            (8) 

 



    vlvl

vl

ee

e
k
kTT

k
k

c ⋅−⋅

⋅

−

⋅







−+−

= 1

2
12

1

2

2               (9) 

 

   vlvl

vl

ee

e
k
kTT

k
k

c ⋅−⋅

⋅−

−

⋅







−+−

−= 1

2
12

1

2

1           (10) 

 
Concluding: 
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�  The case  01 =k  
 
The equation (1) then becomes: 
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then 
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Without taking into consideration the initial conditions, 
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Now the solution for T(x) is: 
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�  The case 01 <k  
 
Denoting 13 kk −=  the equation (1) becomes: 
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becomes: 
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Knowing that 03 >k then Rv ∈∃ , such that 3

2 kv = . 
The equation (17) then becomes: 
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Then the solution for Y(x) is  
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Taking into consideration the initial conditions it 
results that : 
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So, 
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Then the solution for T(x) is 
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1.2 Computing Variables from Auto - Dependent 
Relations 
    
�  Computing T  
 
In equation (1), it is possible for 1k

 
and 2k

 
to be T – 

dependent. This dependency can be a complex one so it 



would be easier to solve the equation without isolating 
T. It is known that the temperature value rises 
(depending on x) from the ends towards the point 
where it reaches the maximum, point where it tends to 
stabilize. A mathematical algorithm (Press 1997) will 
be elaborated in order to determine T.  

 
T will be assigned the minimal value of 0T

 
and lT . 

Then it is computed with the corresponding equation 
(see the cases from 1.1). If the difference between the 
computed temperature and the used one is less than ε (ε 
is selected around a very small value - e.g.: 610− ) then 
it means that the stability zone has been reached and 
the needed temperature has been obtained. Otherwise, 
the temperature is again computed using the newly 
obtained temperature. The algorithm is repeated until 
the stability condition is reached or a number of 
iterations is exceeded (the number of iterations is 
selected by the user). If this number is exceeded, it 
means that the stability will never be reached because 
some values are too large. 
 
�  Computing a function of T 
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An other problem that may be encountered is the 
computing of one of ij  where ij  is a temperature 
dependent variable. As in the above paragraph, in some 
cases, it may be easier to compute ij  with an algorithm 
without isolating it. In order to compute ij  the value of 
T is needed. In most cases, the T dependency is a 
monotone or a quasi - monotone one. Only the 
algorithm for ij  will be explained, as being an 
increasing function of T. The decreasing case would be 
treated similarly.  
 
For the beginning ij  will be assigned 0. It is 
considered a ratio –x (the value of this ratio is selected 
by the user). ij  is increased by this ratio x. With this 
newly obtained value, T is computed. We compare this 
new T with the real value of T.  
 
If the modulus difference is less than ε, then ij

 
is 

appreciatively the value needed. Otherwise, if the new 
T is smaller than the real T, ij  is then again increased 
by x.  
 
Else, if the new T is greater than the real T, ij  is 
decreased by x. x is divided by r (selected by the user - 
e.g.: r = 10) and ij  it is increased by the new x and T is 
again computed.  
 
Otherwise, the temperature is again computed with the 
newly obtained temperature. The algorithm is repeated 
until the real temperature is almost obtained (the 
difference is less than ε) or a certain number of 

iterations is exceeded (the number of iterations is 
selected by the user). If this number is exceeded, it 
means that the real temperature can not be obtained 
with the values that the other parameters have.  
 
 
2. ALGORITHMS, PROGRAMS AND RESULTS  
 
2.1 Implementing the Solution for a Heat 
Differential Equation 
 
The algorithm for the proposed solution is: 
 
compute k1 and k2 
 
if k2 > 0 

then +← TT   
else if k1 = 0 

      then 0TT ←  
        else −← TT   
where 
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The implementation of this algorithm in C++ (Schilling 
2000) is shortly presented bellow. The computing of 1k  
and 2k  will not be presented because this part uses the 
particular equations for the two variables and thus it is 
of no interest to us. 

 
------------------------------------------------------------------- 
long intIter=0;   
 // stores the number of iterations 
 

double m_Tm, m_Te, m_Tm, m_l, m_d, m_I;  



 // environment,        

 

 // ends, middle temperatures, length, diameter, current  

int k;                // is k1 from equation (1) 
CString strFinalValue;    //it will be used to format the 
// values to be  shown 
 
double temp (int k1) 
{ 
switch (k1): 
{ 
 case -1: return T1 =…   
 // the value −T  computed at 2.1  
 case  0: return  T2 =…    
// the value 0T  computed at 2.1  
 case  1: return  T3 =…   
 // the value +T  computed at 2.1  
} 
} 
------------------------------------------------------------------- 
 
T=temp(k);   
// temp(int) is the function that actually computes the 
// temperature; k is an integer variable which shows if 
 // k1 is positive, negative or zero 
 
 ----------------------------------------------------------------- 
if((m_Tm<0)||(intIter>suprem)) 

 m_dTf="Can not be computed";                

//m_dTf is a CString  

 // variable associated to the combobox on the form 

 else 

 { 

strFinalValue.Format("%.2f",m_Tm); 

 m_dTf=strFinalValue; 

} 

UpdateData(false); 

 
 
2.2 Programming Algorithms for Computing 
Variables from Auto - Dependent Relations  

 
 
�  An algorithm to implement the proposed solution 
would be: 

 
T ←min(T1,T2) 
Repeat 

T0 ←T 
Compute T 
it ← it+1 

Until T-T0 < ε or it >100000 
 
where T1 and T2 are the variables for the temperatures 
at the ends, ε is a very small number (10-8) and it is a 
variable that counts the iterations.  
 
�  An algorithm to implement the proposed solution 
for the increasing dependency would be: 
 
j ←0 
x ←0 
 
Repeat 

j ← j+x 
Compute T 
it ← it+1 

 if Tr > T+ε 
  j ← j-x  
  x ←x/10 
Until T-Tr<ε or it>1000000 
 

T0 T1 T2 I L d di di /d iter 

20 24 42 50 4.5 2.18 1.09 0.5 40 

21 25 45 150 6 3.87 0.77 0.2 27 

60 70 80 100 8 3.42 2.73 0.8 48 

20 24 42 49.8 4.5 2.18 1.09 0.5 29 

21 25 45 149.7 6 3.87 0.77 0.2 25 

60 70 80 100.8 8 3.42 2.73 0.8 18 

20 24 42.3 50 4.5 2.18 1.09 0.5 4 

21 25 45.5 150 6 3.87 0.77 0.2 4 

60 70 82.1 100 8 3.42 2.73 0.8 5 
 
Table 1 
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Figure 2  The variation of the number of iterations 

where j is the variable ij  from the paragraph 1.2 (it is 
T dependent), x is the ratio, and Tr is the real 
temperature. 
 

 
2.3 Results 

 
Here, the case of a electrical conductor heated from 
both ends with the same temperature as the result of 
current passing through (see figure 1) is taking into 
account.  
 

In the following table, table1, are listed computational 
examples. The computed variables are printed in bold 
& italic characters while the given ones are printed in 
normal characters.  
where: 

T0 – environment temperature 
T1 – temperature at the ends of the conductor 
T2 – temperature in the middle of the 
conductor  
I – current 

l – length 
d – diameter 
di  – interior diameter 
iter – number of iterations to compute the 
wanted value 
 

It follows two graphic examples concerning the 
computation. In figure 2, the Series 1, 2 and 3 plot the 

function 








⋅
⋅
Td
lIiter  when d, I respectively T2 are 

computed.  
 
In figure 3 on the X axis is the current multiplied by 
length over diameter, while on the Y axis is the 
diameter, dT is the temperature difference between the 
ends of the conductor and its middle and δ, which takes 
values in the range 0..0.9, represents the ratio between 
the interior and full diameter. 
 
 
3. CONCLUSIONS AND FURTHER 
DEVELOPMENT 
 
Problems concerning heat come up in certain 
engineering applications. The process of solving these 
problems exceeds the technical area and is to be found 
in mathematical problems that can be considered 
individually (Lienhard 2001). 
 
There have been presented two such problems. Both 
problems were given theoretical solutions and these 
solutions were implemented using computing 
programs. 

T1

T0 

T2 T1 

     
     Figure 1 A conductor heated by the passing current 



Figure 3  The values of d for ratios δ=di/d 
 

The solutions found for the given problems have a high 
degree of generality, which allows them to be used in 
different applications where heat problems come up, 
but only if the initial specified conditions are similar.  
 
Further developments can be achieved taking into 
consideration the time dependency in the heat equation. 
When considering time, the equations will be different 
and also the programs will have slight differences 
compared to the ones presented by this paper. 

 
REFERENCES 

 
Betounes, D., Partial Differential Equation for 
Computational Science, New York, Springer 
Verlag,1998. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Lienhard IV, Lienhard V, J.H., A Heat Transfer Text 
Book, Third Edition, Phlogiston Press, Cambridge 
Massachuetts, 2001. 
Press, W.H., Teukolski, A.S., Vetterling, T.W., 
Flannery., B. P.,  Numerical Recipes in C, Cambridge 
University Press,1997.  
Schilling, R.J., Harris, S.L., Applied Numerical 
Methods for Engineerig Using Matlab and C, 
Brooks/Cole, 2000. 
Teodorescu, N., Olariu, V., Ecuatii diferentiale si cu 
derivate partiale, Editura Tehnica, Bucuresti, 1980 
Tveito, A., Winther, R., Introduction to Partial 
Diferential Equation; A Computation Approach, New 
York, Springer, 1998.  
 


