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Abstract: This paper presents the mathematical 
model of a planar robot where the active pair of leg has 
three free joint. The mathematical model of the robot is 
determined considering all the points in the xz-plane as 
being complex numbers. Taking into account a possible 
symmetrical structure, only the vertical xz-plane 
evolution is considered. The results can be extended to 
three-dimensional space. 
 The approach is best on variable dynamic systems, 
considering that each leg of the pair can change the state 
depending of the causality order.  
 The approach is also best on the mechanical 
structure of a planar robot presented in (Petrişor, Marin 
2003). 
 It is considered that the first leg has both joints free 
and the second leg has the second joint free. 
 A  systemic approach of the Variable Causality 
Dynamic Systems (VCDS) is presented with results 
which allow an easy numerical implementation.  
 The model is implemented in MATLAB 
environment and some evolutions examples are 
presented. 
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1. INTRODUCTION 
 

Behavior of walking robots is characterized by a 
specific type of movement called legged locomotion, 
(Thirion, et al., 2001), (Cubero, 2001). Legged 
locomotion combines continuous time differential 
systems and logical systems concepts, which allow 
describing the both fundamental aspects: leg movements 
and leg coordination. As a result, different types of 
legged movements are possible as walking gates and 
climbing movements. 

 Many control algorithms implemented on the 
existing walking robots, (WMC 2003), (CWR 2003), 
are based on "state of the art" technologies to control the 
movements of articulated limbs and joint actuators. 

This paper presents the mathematical model of a 
planar robot where the active pair of leg has three free 
joint. The mathematical model of the robot is 
determined considering all the points in the xz-plane as 
being complex numbers. Taking into account a possible 

symmetrical structure, only the vertical xz-plane 
evolution is considered. The results can be extended to 
three-dimensional space. 

It is considered that the first leg has both joints free 
and the second leg has the second joint free. 

2. GEOMETRICAL STRUCTURE  

Let us consider a planar walking robot (PWR) 
structure as depicted in Fig.1. , having three normal legs 

i j pL , L , L and a head equivalent to another leg L0

containing the robot centre of gravity G placed in its 
foot. The robot body RB is characterised by two 
position vectors 0O , 1O and the leg joining points (hips) 
denoted iR , jR , pR . The joining point of the head 0L is 
the central point 0O , 0 0R O= , so the robot body RB is 
univocally characterized by the set,  

0 1 i j p 0RB {O ,O , , , , }= λ λ λ λ , (1) 

where  0 0λ = . The robot has a rigid body if the three 
scalars   ( iλ , jλ , kλ ) are constant in time. 

The geometrical structure of the PWR is defined by  
1 0 jO O e ⋅θ− = (2) 
i 0 i jR O e ⋅θ= + λ ⋅ (3) 
j 0 j jR O e ⋅θ= + λ ⋅ (4) 
p 0 p jR O e ⋅θ= + λ ⋅ (5) 
0 0 0 j 0R O e O⋅θ= + λ ⋅ = (6) 

from which,  
i j i j jR R ( ) e ⋅θ− = λ −λ ⋅ (7) 
p j p j jR R ( ) e ⋅θ− = λ −λ ⋅ (8) 
i p i p jR R ( ) e ⋅θ− = λ − λ ⋅ (9) 

 

Fig.1. The robot geometrical structure. 
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The robot position in the vertical plane is defined by 
the pair of the position vectors 0O , 1O
where 1 0| O O | 1− = , or by the vector  0O and the 
scalar θ , the angular direction of the robot body. 

i j p 0

connection of oriented subsystems, is illustrated in 
Fig.2.  
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Each of the four robot legs L , L , L , L , is 
characterised by an so called Existence Relation 
ER(L) depending on specific variables as we presented 
in (Petrişor, Marin 2003). 

The mathematical model of this object is a Variable 
Causality Dynamic Systems VCDS (Marin, 2003) and 

 be analysed from this point of view. u1,j

| Rj – Ri | = rji
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A pair of legs { }i jL ,L constitutes 

Active Pair of Legs (APL) if  the robot b
the same irrespective of the feet position 
legs different of  iL and jL . A label is as
possible APL. The APL label is expresse
q called Index of Activity (IA) which
values, numbers or strings of characters
the string of characters, q 'ij'= points o

{ }i jL ,L is an APL. Instead of  strings o

IA can take numerical values as for exam
q 12 q 'ij'= ⇔ =
q 23 q ' jp '= ⇔ =
q 31 q 'pi '= ⇔ =
All the other legs that at a time instant d
APL are called Passive Legs (PL). 

The leg in APL, having a free joining
called slave leg the opposite of the motor
whose both joining points are external co

3. CAUSALITY ORDERING O
WITH THREE FREE JOINTS 

Let be APL={ }i jL ,L that means q '=

Changing the indices, the below  relation
for any APL. 
The kinematics structure of this APL can
Fig.1.  

In this structure only one angle is exte
(EC) so three joints are free. Consid
pair iL , jL as APL we denote this by   

q 'ij'= , ps motor00, motor01, s =  
or 

q 'ij'= , ps motor00, motor02, s =   .

In this paper it is considering only
ordering: 

s=[motor00, motor 01, sp ]
In this causality ordering  the angle 

the angle 2, ju is free.  
 The block diagram of this causa
considering 1, ju to be EC, is rep
the so called 
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Fig.2. Block diagram of a  causality structure  
with three  free angles. 

 
In this structure, the position vectors iR , iG , jG

can be external controlled. The vector jR depends on  
iR , jG and satisfies  j i

jiR R r− = . Now, the 

vector iG does not affect jR . The output variables are, 

( )j i j 1, j
jR H R ,G , u= (13) 

( )1,i i i j 1, j
1iu F R ,G ,G ,u= (14) 

( )2,i i i j 1, j
2iu F R ,G ,G ,u= (15) 

( )2, j i i j 1, j
2 ju F R ,G ,G , u= (16)  

It can be observed that the iα and iβ depend on iR

and iG only. 
i j 1, j j

2 jF (R ,G ,u ,s )θθ = (17) 

( )i i if R ,Gαα = (18) 

( )i i if R ,Gββ = (19) 

but the command angles 1,iu , 2,iu are referred with 
respect to the robot body so they depend on the position 
angle θ so they depend on  jG and 1, ju .
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The relations (17), (18) represent the mathematical 
model solution of an isolate leg with two free joints. 
So, for the leg iL we have 

i i i i i i i iˆ[ , ,s ] f (R ,G ,s ,a ,b )αβα β = (20) 

 The output variable jR , θ , 2, ju are calculated from 
the existence relations 

j j j jR G e ABθ= − ⋅  (21) 
2, j 1, jj ju j j j uAB e [b a e ]⋅= ⋅ + ⋅ (22)  

of the leg jL and the kinematic restriction  
j i j i jR R ( ) e ⋅θ− = λ −λ ⋅ (23) 

where 
j i

ijrλ −λ = = constant    (24) 

 The input-state-output relations of the leg jL in 
causality structure motor01 are illustrated in Fig3. 
 

Fig.3. The input-state-output relations of the leg jL .

For example, the same pair of values ( jR , jG ) can 
be realized in two ways: 

[ ]2, ju ,0∈ −π ⇔ jŝ 'down '=
(25) 

and 
2, ju (0, ]∈ π ⇔ jŝ ' up '= (26) 

 

[ ]2, ju ,0∈ −π ⇔ jŝ 'down '= 2, ju (0, ]∈ π ⇔ jŝ ' up '=

Fig.4. The achievement of the values ( jR , jG ) .

The equations (21), (23) represent two complex 
equations, so 4 scalars equations from which are 
calculated the outputs θ , jR , 2, ju that means two 
scalars and a complex number. 
Replacing for j iλ ≠ λ

j i
j

j i
R Re θ −=
λ −λ

(27) 

from (23), in  (21) are obtained 
j i j j i

j 1, j 2, j i j
j i j

( ) G AB RR f (u ,u , R ,G )
AB

λ −λ ⋅ + ⋅= =
λ −λ +

(28) 

from which on calculate 
j i

j i j i
j i j
G RR R ( )

AB
−

− = λ −λ ⋅
λ −λ +

(29) 

 By replacing (29) in (27) is obtaine, for j i 0λ − λ ≠
j i

j
j i j
G Re

AB
θ −=

λ −λ +
(30) 

for which 
j i

j
j i j
G Re

AB
θ −=

λ −λ +
(31) 

thus, is obtained the kinematic restriction condition 
moved to the input, 

j i j j iAB G Rλ −λ + = − . (32) 
 The relation (32), in explicity form becomes, 

2, j 1, jj i ju j j ju j ie [b a e ] G Rλ −λ + ⋅ + ⋅ = − (33) 
 The angle value is obtained from (33)  

2, j 2, j 1, j i j j
2 j ˆu u F (u ,R ,G ,s )= =� (34) 

The state jŝ is introduced to restore the input-output 
univocity. 
 We denote,   

1, jj j ju
2 jW b a e= + ⋅ (35) 

where the subscript 2 meaning that angle 2u (here 2, ju )
is free, so by division with 2 jW ,(33) becomes 

2, jj i j i
j u

2 j 2 j

G Re
W W

⋅λ − λ −+ =  (36) 

 We denote, 
j i

x z 1, j
2 j 2 j 2 j 2 j

2 j
Q q j q Q (u )

W
λ −λ= = + ⋅ = (37) 

j i
1, j i j

2 j 2 j
2 j

G Rg g (u ,R ,G )
W
−= = . (38) 

 It is obtained a polynomial equation, with unknown 
scalar 2, ju , presented in the form as 

2, jju
2 j 2 jQ e g+ =  (39) 

It is obtained 
x z 2, j 2, j
2 j 2 j 2 jq j q cos(u ) j sin(u ) g+ ⋅ + + ⋅ = (40) 

x 2 z 2 x 2,j z 2,j 2
2j 2j 2j 2j 2j(q ) (q ) 1 2 q cos(u ) 2 q (sinu ) g+ + + ⋅ ⋅ + ⋅ ⋅ =

a linear equation in sin and cos.                                 (41)
We denote, 

x 1, j
2 j 2 j 2 ja 2q a (u )= =  (42) 

z 1, j
2 j 2 j 2 jb 2q b (u )= =  (43) 

2x 2 z 2 z
2 j 2 j 2 j 2 j 2 j 2 jc (q ) (q ) 1 g Q 1 g= − − − + = − − + (44) 

1, j i j
2 j 2 jc c (u ,R ,G )=

From (39), with (42) ÷ (44) is obtained a 
trigonometric equation 

2, j 2, j
2 j 2 j 2 ja cos(u ) b sin(u ) c+ =  (45) 

with the following solutions of the t current moment: 
2, j 2, j 1, j i j j

2 j ˆu u (t) F (u ,R ,G ,s )= =� (46) 
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The case 2 jb 0= and 2 ja 0≠

[ ]2 j
2 j

2 j
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arccos 0,

a
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 
 

, 2 ja 0≠ (47) 

2 j
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2 j
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(49) 
 The case 2 jb 0= and 2 ja 0= , is possible only if 

2 jc and we suppose   

2 j 0ϕ = , 2 j 0ψ = , 2, ju (t) 0=� (50) 

 The case 2 jb 0≠

On calculate: 

2 j
2 j

2 j

a
arctg ( / 2 , / 2)

b
ϕ = ∈ −π π  (51) 

2 j 2 j
2 j 2 22 j 2 j 2 j

b c
arcsin [ / 2 , / 2]

b (a ) (b )

 
 ψ = ⋅ ∈ −π π  + 

 (52) 
If 2, ju (t ) 0− ε ≤ ⇔ 1, js 'down '=

( ) 2 j 2 j2, j

2 j 2 j

u t
−ϕ +ψ= 
−ϕ +ψ − π

�
if
if

2 j 2 j

2 j 2 j

0

0

−ϕ +ψ ≤

−ϕ +ψ >
(53) 

If 2, ju (t ) 0− ε > ⇔ 1, js 'up '=

( ) 2 j 2 j2, j

2 j 2 j

u t
−ϕ +ψ + π= 
−ϕ +ψ

�
if
if

2 j 2 j

2 j 2 j

0

0

−ϕ +ψ ≤

−ϕ +ψ >
(54) 

 The solution (34) of the equation (33) equivalent 
with (50) is given by one of the expression (49), (50), 
(53) or (54). Each form, in its validity conditions, 
respects the  kinematic restriction of rigid body (24). 
 Fig.5 presents a block diagram which illustrate the 
subordonation of different relations in 2, ju� angle routine 
computation 
 

Fig.5. The block diagram. 

which is such as (34) 
2, j 1, j i j j

2 j ˆu F (u , R ,G ,s )=� (55) 
concis illustrated dependence in Fig. 6. 
 

Fig.6. Concis block diagram . 
 

Knowing the angle value 2, j 2, ju u= � , on calculate 
the input variables vector oj the leg jL

2, j 2, j 1, j~ j j u j u j j j u
2 j2AB e W e [b a e ]⋅ ⋅ ⋅= ⋅ = ⋅ + ⋅� �  (56) 

which assumed the kinematic restriction. 
 In such of conditions the angle θ and the vector jR
are calculated, by replacing (56) in (30) and (28), 

j i
j

~ jj i
2

G Re
AB

θ −=
λ −λ +

(57) 

whence 

j i
1, j i j j

2 j~ jj i
2

G R ˆarg F (u , R ,G ,s )
AB

θ
 

− θ = = 
 λ − λ + 

 (58) 

~ jj i j i
j 1, j i j j2

2 j~ jj i
2

( ) G AB R
ˆR H (u ,R ,G ,s )

AB

λ −λ ⋅ + ⋅
= =

λ −λ +
(59) 

 Also, the knowledge of the angle θ allows the 
calculation of the free angles 1,iu , 2,iu of the leg iL ,

about which are already known the angles iα , iβ

estimated by the function ( )fαβ ⋅ , (20). 

 The angles 1,iu , 2,iu are 
1,i i iu = α −β (60) 
2,i iu = β −θ− π (61) 

 A calculation alternative suppose first assessment of 
the  vector jR by  relation (59) and then the angle θ is 
estimated  from the vectors iR şi jR as in relation (62) 

1, j i j j ij i 2 j
j i j i

ˆH (u , R ,G ,s ) RR Rarg arg
   −−  θ = =    λ − λ λ −λ   

(62) 

instead of relation (58). 
 

4. CONCLUSIONS 
 

The mathematical model on VCDS allows the best 
implementation of the robot behaviour.  
 Based on relations obtained it was conceived and 
implemented computer programs for simulation and 
control. 
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5. EXAMPLES OF EVOLUTIONS USING 
MATLAB ENVIRONMENT 
 

Fig.8. Initial state of the robot . 
 

Fig.9. The state of the robot for  
1, ju ct= ; x

iR 2,6= − ; z
iR ct.=

Fig.10. The state of the robot for  
1, ju ct= ; x

iR 0,76= − ; z
iR ct.=

Fig.10. The state of the robot for  
1, ju ct= ; x

iR ct= ; z
iR 0,818= .

Fig.10. The state of the robot for  
1, ju ct= ; x

iR ct= ; z
iR 0,978= .

Fig.10. The state of the robot for  
1, ju 0,18= ; x

iR ct= ; z
iR ct= .



Fig.10. The state of the robot for  
1, ju 0,3= ; x

iR ct= ; z
iR ct.=

Fig.10. The state of the robot for  
1, ju 0,16= − ; x

iR ct= ; z
iR ct.=
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