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Abstract: A study on classification capability of 
neural networks is presented, considering two types 
of architectures with supervised training, namely 
Multilayer Perceptron (MLP) and Radial-Basis 
Function (RBF). To illustrate the classifiers’ 
construction, we have chosen a problem that occurs 
in real-life experiments, when one needs to 
distinguish between overlapping and Gaussian 
distributed classes. An amply commented 
comparative study is elaborated between MLP- and 
RBF-type classifiers, in order to reveal advantages 
and disadvantages encountered when the two types of 
neural network architectures are used. 
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INTRODUCTION 
 
The approximation capability of some neural network 
topologies made them a popular tool for nonlinear 
system identification and classification tasks. A 
classification task can be regarded as a process where 
each presented input (pattern) is assigned to one of a 
predefined number of classes (categories). 
 
The purpose of this paper is to illustrate the usage of the 
(Multilayer Perceptron) MLP and (Radial-Basis 
Function) RBF in pattern classification and to elaborate a 
comparative analysis of their efficiency, relying on some 
relevant case studies. The MLP and RBF networks are 
feed-forward architectures which are trained in a 
supervised manner and they are both topologies capable 
of universal approximation (Cybenko 1989; Park et al. 
1991). 
 
The design of a neural network classifier is made in two 
distinct steps, namely the training session and the usage 
as a classifier. The classification performed by a feed-
forward neural network can be regarded as a feature 
extraction – performed by the neurons placed in the 
hidden layers – followed by a classification performed 
by the output neurons.  

The organization of the material presented in the paper 
corresponds to the following plan. The exposition starts 
with the systematic construction of neural classifiers 
(second section). It continues with the case studies which 
consider as classification task the separation between 
Gaussian distributed overlapping classes, for which the 
probability of correct classification using the Bayessian 
classifier can be estimated (Haykin 1999). The case 
studies take into account various training parameters and 
topologies of the networks, including redundancy on the 
network’s output layer, in order to develop a 
comparative study between MLP- and RBF- type 
classifiers (fourth section). The quality of the neural 
classifiers is interpreted from the point of view of the 
training time and from the point of view of the 
probability of correct classification. 
 
The organization of the presented material can be 
regarded as containing the steps to be taken in order to 
design a neural classifier suitable to the classification 
tasks required by real-life experiments. 
 
 
THEORETICAL PRELIMINARIES 
 
The neural architectures used in the two steps involved 
in the design of a classifier – the training session and the 
usage as a classifier – are slightly different. The neural 
architecture used in the first step is a standard two-layer 
topology, either MLP or RBF, but in the second step a 
new layer must be added (Duda et al. 1973; Fukunaga 
1990; Richard et al. 1987). 
 
During the training session of a neural classifier a set of 
input vectors (which are relevant for a certain 
experiment) is presented to the network along with their 
corresponding categories, each class being coded in a 
binary mode (usually combinations of a positive value, 
namely 1, and a negative value, namely -1). 
 
In order to exploit the trained network as a classifier, a 
new layer with bipolar step activation functions must be 
added at the output of the standard MLP and RBF 
topologies. The number of perceptrons in the new layer 



is equal to the number of outputs of the trained network. 
The architecture of the obtained neural classifier is 
presented in figure 1. 
 

 
Figure 1: Modular architecture of a neural classifier 

 
The two layers of the trained MLP or RBF network 
extract a feature from the presented input, and the added 
output layer transposes the feature vector into a code 
corresponding to one of the predefined classes. In order 
to obtain a correct mapping, the weight matrix of the 
new layer will be equal to the unity matrix, and the 
perceptrons will have zero biases. 
 
 
ILLUSTRATIVE CASE STUDIES 
 
In order to study the quality of the MLP- and RBF- type 
neural classifiers, the following classification task is 
considered. The objective is to distinguish between two 
overlapping equiprobable classes. Each class contains 
two-dimensional Gaussian distributed patterns, the first 
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The optimum (Bayesian) decision boundary for this kind 
of problem (Lippmann 1987; Haykin 1999) is a circle 
with the center located at: 
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Figure 2 presents the Bayesian decision boundary and a 
set of 500 vectors from each class, plotted by using 
different symbols. The probability of correct 
classification of the Bayes classifier was estimated by 
performing a computer experiment which takes into 
account a large number of vectors from each class 
(namely 1 million), the obtained value being pB ˜  93.73%. 
 
The following two subsections illustrate the development 
of MLP- and RBF- type classifiers, respectively, for 
which the probability of correct classification is 
estimated by considering a set of vectors “unseen” 
during the training phase. Both the time necessary for 
training the network (ttrain) and the comparison between 

the probability of correct classification (pclassif) and pB 
reflect the quality of a neural classifier. 
 
Due to the random nature of the input patterns, all the 
numerical results to be given represent the mean of a 
series of 5 experiments. 
 

 
Figure 2: The distribution of the two classes and the 

Bayesian decision boundary 
 
 
Usage of an MLP-Type Classifier 
 
The examples presented in this subsection illustrate the 
dependence of the quality of the MLP classifier on the 
network architecture and the training parameters.  
 
The MLP architecture to be used in classification tasks is 
a two layer feed-forward neural network, with transfer 
(activation) functions of the input and output layer 
respectively tf1 and tf2. There are four different MLP 
topologies recommended in literature, the differences 
between them consisting in the transfer functions, as 
follows: 

a) tf1 = tansigmoid function, tf2 = tansigmoid 
function; 

b) tf1 = tansigmoid function, tf2 = linear function; 
c) tf1 = tansigmoid function, tf2 = logsigmoid 

function; 
d) tf1 = logsigmoid function, tf2 = logsigmoid 

function. 
 
Table 1 presents the results obtained by using the four 
MLP topologies, each network having two input neurons 
and one output neuron and the same training parameters. 
 

MLP topology obtained 
results a) b) c) d) 
ttrain (s) 16.7 14.6 15.5 15.3 

pclassif (%) 89.97 92.81 82.31 79.25 

Table 1: Results obtained using four different MLP 
topologies 



The best results in this case were obtained by using the 
MLP classifier with tansigmoidal neurons in the first 
layer and with linear nodes in the output layer. For this 
reason, all the experiments to be presented in this 
subsection will use this architecture. 
 
The design of a neural classifier which presents 
redundancy in the output layer can be a useful option in 
some cases. For the proposed classification task, this 
would be the case of an MLP network with more than 
one neuron in the output layer. The following results 
were obtained by using a network with two output linear 
neurons (and two input tansigmoidal neurons): 

- Probability of correct classification, pclassif = 
92.62 %; 

- Probability to detect an error (security), pdetect = 
96.64 %; 

- Training time, ttrain = 84.8 s. 
 
The usage of such a redundant architecture leads to a 
more secure classifier, the probability of correct 
classification being close to the one of a non-redundant 
topology; the disadvantage is the increased time 
necessary for training the network. 
 
A large set of experiments was performed in order to 
study the dependence of the quality of an MLP classifier 
on the number of input neurons and on the number of 
epochs used in training; the obtained results are 
presented in the next section. In the case of varying the 
number of input neurons it is interesting to observe the 
position of the decision boundary of the MLP classifier 
versus the Bayesian one (figure 3). 
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Figure 3: The boundary of the MLP classifier (dashed 
line) versus the Bayesian boundary (solid line): 

a. MLP network with 2 input neurons; 
b. MLP network with 8 input neurons; 
c. MLP network with 10 input neurons. 

 
 

Usage of an RBF-Type Classifier 
 
The standard topology of an RBF neural network 
exhibits, on the first layer, a collection of nodes with a 
Gaussian-type transfer function, the second layer 
consisting of linear neurons. 
 
The design of an RBF neural network can be understood 
as a curve-fitting problem in a high-dimensional space; 
the learning process is equivalent to finding a surface 
that provides the best fit to the training data, according to 
the desired accuracy; the spread of radial basis functions 
determines the smoothness of the approximation. The 
training algorithm adds neurons to the input layer of the 
network until the specified mean squared error goal is 
met. 
 
Figure 4 reveals the decision boundary of an RBF 
network versus the Bayesian one, when using the RBF 
architecture as a classifier for the previously mentioned 
task. Unlike the MLP case, the boundary imposed by an 
RBF classifier has nearly the same shape, regardless the 
number of the radial neurons. 
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Figure 4: The boundary of the RBF classifier (dashed 
line) versus the Bayesian boundary (solid line): 

a. RBF network with 2 input neurons; 
b. RBF network with 5 input neurons 

 
As for the MLP architectures, the influence of training 
parameters of an RBF network on the quality of 
classification is presented in the next section. 
 
 
COMPARISON BETWEEN MLP- AND RBF- 
TYPE CLASSIFIERS 
 
MLP and RBF networks are both universal 
approximators, property which can be used, as shown, in 
classification tasks. For this reason it is worth to develop 
a comparative study with regard to their exploitation as 
classifiers. Therefore, RBF and MLP classifiers have 
been constructed for the same classification task, namely 
that one considered in the previous section. 
 
All the results commented below have been obtained by 
batch training, considering that each class is known by 
500 patterns. To ensure the relevance of the 
comparisons, all the training conditions of MLP 
networks have used a unique value for the error goal 
(namely 0) and a unique value (namely 1) to initialize 
weights and biases. Interest will first focus on the main 



features of training procedures, and, afterwards, 
emphasis is placed on the quality of the designed 
classifiers. All the simulation experiments were 
conducted under Neural Network Toolbox provided in 
Matlab software (The MathWorks Inc. 2001) 
 
 
Comments on Network Training 
 
The results of network training are analyzed for various 
conditions used in the learning process. Thus, for MLP 
topology, the achieved mean squared error is regarded 
as the result of training (which depends on two key 
parameters: the number of training epochs and the 
number of tansigmoidal neurons). For RBF architecture, 
the number of radial neurons is regarded as the result of 
training (which depends on two key parameters: the 
mean squared error goal and the spread of radial 
functions). This point of view in understanding the role 
of the training conditions allows a comprehensive 
interpretation based on the three dimensional plots given 
in figure 5 (a – for MLP network, b – for RBF network). 
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Figure 5: Graphical interpretation of the key elements 
characterizing the network training: 

a. achieved mean squared error of MLP network 
depending on number of epochs and number of 

sigmoidal neurons; 
b. number of input neurons of RBF network depending 

on mean squared error goal and spread of radial functions. 

From figure 5.a, one can observe that for the MLP 
classifier the result of training (obtained mean squared 
error) is influenced in the first instance by the number of 
sigmoidal neurons, for a medium number of epochs 
(greater than 200). 
 
In order to compare the computation requested by the 
training of MLP- and RBF-type classifiers, figure 6 
displays the dependence of the training time on the same 
training parameters previously considered. The 
numerical values of training times make sense only if all 
experiments are conducted on the same computer and in 
similar conditions. For MLP network, the training time 
increases when the number of sigmoidal neurons and/or 
the number of training epoch increase (figure 6.a). The 
plots in figures 5.b and 6.b have nearly the same shape 
because the time necessary to train an RBF network 
depends on the number of radial neurons to be added in 
order to obtain the desired error. Beside the probability 
of correct classification, the training time reflects the 
quality of the constructed classifier, which is discussed 
in the next subsection. 
 

 
a 
 

 
b 

Figure 6: Dependence of the training time on the 
training parameters:  

a. number of epochs and number of sigmoidal 
neurons for MLP network;  

b. mean squared error goal and spread of radial 
functions for RBF network. 

 



 
Comments on Classification Quality 
 
The probability of correct classification of the trained 
classifiers is evaluated in terms of simulation results 
obtained for input vectors which have not been presented 
to the network during the training session. A graphical 
interpretation of these results can be given along the 
same lines as in the previous subsection, by considering 
the three-dimensional plots depicted in figure 7. 
According to our current interest, the surfaces plotted in 
these figures reflect the dependence on the training 
conditions (investigated in the previous subsection) of 
the classifier main quality, expressed (for both RBF and 
MLP networks) as the probability of correct 
classification resulting from simulation. The plots given 
in figure 7, together with those presented in figure 6, 
allow comparing the quality of the MLP- and RBF-type 
classifiers from the point of view of the probability of 
correct classification and of the training time, 
respectively. 
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Figure 7: Graphical interpretation of the neural 
classifiers’ quality depending on the training parameters: 
a. probability of correct classification of MLP network 

depending on number of epochs and number of 
tansigmoidal neurons; 

b. probability of correct classification of RBF network 
depending on mean squared error goal and spread of 

radial functions. 

 
The direct visual examination of figure 7.a shows that 
the quality of MLP classifier decreases by using a large 
number of training epochs, fact which suggests that the 
size of the training data set is too small for the network 
to get a correct generalization. In accordance with 
figures 5.a and 7.a, it is worth noticing that the smaller 
achieved error in training does not guarantee that the 
obtained classifier is the best. Anyway, the quality of the 
MLP classifier is not significantly affected by the 
training parameters, the difference between minimum 
and maximum probability of correct classification being 
smaller than 1%. 
 
By using the RBF architecture, one can obtain a better 
probability of correct classification, but an inadequate 
choice of training parameters of the radial basis network 
can lead to bad performances of this classifier. 
Moreover, by comparing the plots in figures 5.b and 7.b, 
one can observe that an RBF classifier with many input 
neurons can have nearly the same quality as an RBF 
classifier with a significantly smaller number of neurons. 
All the remarks referring to MLP- and RBF- type 
classifiers are actually founded on precise numerical 
information, used for constructing the graphical plots. 
 
When using a large set of training data is available, the 
MLP network generalizes well, and the result of an 
accurate training is usually able to provide trustable 
information about the quality of the obtained classifier. 
The situation is presented in figure 8, using 5000 vectors 
from each class in order to train the network. As 
expected, the training time is approximately ten times 
bigger than in the previous case. Unfortunately, in real-
life experiments a large set of training data it might be 
difficult to obtain or improper to use because of the 
required computation time. 
 

 
Figure 8: Probability of correct classification of an MLP 
network (trained using a large set of data) depending on 
number of epochs and number of tansigmoidal neurons 

 
The remarks issuing from the presented comparison can 
be compared with the conclusions of a study involving 
the usage of MLP- and RBF- architectures in 
identification tasks (Kloetzer et al. 2001, 2002). 
 
 



CONCLUSIONS 
 
The purpose of this paper was to illustrate the usage of 
supervised trained neural networks in classification 
tasks. The problem chosen in order to construct neural 
classifiers reflects a situation that can occur in real-life 
experiments, namely the need to distinguish between 
overlapping and Gaussian distributed classes. The 
experiments were conducted in a manner that makes 
possible the development of an amply commented 
comparative study between MLP- and RBF- type 
classifiers. The MLP network provides a good quality 
and its performance is not much influenced by the fine 
tuning of the training parameters, making this type of 
classifier the optimum tool for less experienced users. It 
is possible to obtain a better RBF classifier (from the 
point of view of complexity and probability of correct 
classification), but this requires either many tests or a 
wide experience. 
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