
ON NEURAL NETWORK CLASSIFIERS WITH SUPERVISED TRAINING

Marius Kloetzer and Octavian Pastravanu

Department of Automatic Control and Industrial Informatics
Technical University “Gh. Asachi” of Iasi

Blvd. Mangeron 53A, Iasi, 700050, Romania
Phone / Fax: +4(0)-0232-230751

E-mail: kmarius@ delta.ac.tuiasi.ro, opastrav@delta.ac.tuiasi.ro

Abstract: A study on classification capability of
neural networks is presented, considering two types
of architectures with supervised training, namely
Multilayer Perceptron (MLP) and Radial-Basis
Function (RBF). To illustrate the classifiers’
construction, we have chosen a problem that occurs
in real-life experiments, when one needs to
distinguish between overlapping and Gaussian
distributed classes. An amply commented
comparative study is elaborated between MLP- and
RBF-type classifiers, in order to reveal advantages
and disadvantages encountered when the two types of
neural network architectures are used.

Key words: classification, decision boundary, neural
networks, supervised training

INTRODUCTION

The approximation capability of some neural network
topologies made them a popular tool for nonlinear
system identification and classification tasks. A
classification task can be regarded as a process where
each presented input (pattern) is assigned to one of a
predefined number of classes (categories).

The purpose of this paper is to illustrate the usage of the
(Multilayer Perceptron) MLP and (Radial-Basis
Function) RBF in pattern classification and to elaborate a
comparative analysis of their efficiency, relying on some
relevant case studies. The MLP and RBF networks are
feed-forward architectures which are trained in a
supervised manner and they are both topologies capable
of universal approximation (Cybenko 1989; Park et al.
1991).

The design of a neural network classifier is made in two
distinct steps, namely the training session and the usage
as a classifier. The classification performed by a feed-
forward neural network can be regarded as a feature
extraction – performed by the neurons placed in the
hidden layers – followed by a classification performed
by the output neurons.

The organization of the material presented in the paper
corresponds to the following plan. The exposition starts
with the systematic construction of neural classifiers
(second section). It continues with the case studies which
consider as classification task the separation between
Gaussian distributed overlapping classes, for which the
probability of correct classification using the Bayessian
classifier can be estimated (Haykin 1999). The case
studies take into account various training parameters and
topologies of the networks, including redundancy on the
network’s output layer, in order to develop a
comparative study between MLP- and RBF- type
classifiers (fourth section). The quality of the neural
classifiers is interpreted from the point of view of the
training time and from the point of view of the
probability of correct classification.

The organization of the presented material can be
regarded as containing the steps to be taken in order to
design a neural classifier suitable to the classification
tasks required by real-life experiments.

THEORETICAL PRELIMINARIES

The neural architectures used in the two steps involved
in the design of a classifier – the training session and the
usage as a classifier – are slightly different. The neural
architecture used in the first step is a standard two-layer
topology, either MLP or RBF, but in the second step a
new layer must be added (Duda et al. 1973; Fukunaga
1990; Richard et al. 1987).

During the training session of a neural classifier a set of
input vectors (which are relevant for a certain
experiment) is presented to the network along with their
corresponding categories, each class being coded in a
binary mode (usually combinations of a positive value,
namely 1, and a negative value, namely -1).

In order to exploit the trained network as a classifier, a
new layer with bipolar step activation functions must be
added at the output of the standard MLP and RBF
topologies. The number of perceptrons in the new layer

is equal to the number of outputs of the trained network.
The architecture of the obtained neural classifier is
presented in figure 1.

Figure 1: Modular architecture of a neural classifier

The two layers of the trained MLP or RBF network
extract a feature from the presented input, and the added
output layer transposes the feature vector into a code
corresponding to one of the predefined classes. In order
to obtain a correct mapping, the weight matrix of the
new layer will be equal to the unity matrix, and the
perceptrons will have zero biases.

ILLUSTRATIVE CASE STUDIES

In order to study the quality of the MLP- and RBF- type
neural classifiers, the following classification task is
considered. The objective is to distinguish between two
overlapping equiprobable classes. Each class contains
two-dimensional Gaussian distributed patterns, the first

class having the mean vector 







=

0
0

1m and the standard

deviation s 1 = 1, and the second class having the mean

vector 







=

3
3

2m and the standard deviation s 2 = 2.

The optimum (Bayesian) decision boundary for this kind
of problem (Lippmann 1987; Haykin 1999) is a circle
with the center located at:

 







−
−

=
−
−

=
1
1

2
1

2
2

2
2
11

2
2

B ss
ss mm

x (1)

and with the radius:

 42,3ln4
1

2
2
1

2
2

2
12

2
1

2
2

2
2

2
1

B ≈



















+

−

−

−
=

s
s

ssss

ss
r

mm
 (2)

Figure 2 presents the Bayesian decision boundary and a
set of 500 vectors from each class, plotted by using
different symbols. The probability of correct
classification of the Bayes classifier was estimated by
performing a computer experiment which takes into
account a large number of vectors from each class
(namely 1 million), the obtained value being pB ˜ 93.73%.

The following two subsections illustrate the development
of MLP- and RBF- type classifiers, respectively, for
which the probability of correct classification is
estimated by considering a set of vectors “unseen”
during the training phase. Both the time necessary for
training the network (ttrain) and the comparison between

the probability of correct classification (pclassif) and pB
reflect the quality of a neural classifier.

Due to the random nature of the input patterns, all the
numerical results to be given represent the mean of a
series of 5 experiments.

Figure 2: The distribution of the two classes and the

Bayesian decision boundary

Usage of an MLP-Type Classifier

The examples presented in this subsection illustrate the
dependence of the quality of the MLP classifier on the
network architecture and the training parameters.

The MLP architecture to be used in classification tasks is
a two layer feed-forward neural network, with transfer
(activation) functions of the input and output layer
respectively tf1 and tf2. There are four different MLP
topologies recommended in literature, the differences
between them consisting in the transfer functions, as
follows:

a) tf1 = tansigmoid function, tf2 = tansigmoid
function;

b) tf1 = tansigmoid function, tf2 = linear function;
c) tf1 = tansigmoid function, tf2 = logsigmoid

function;
d) tf1 = logsigmoid function, tf2 = logsigmoid

function.

Table 1 presents the results obtained by using the four
MLP topologies, each network having two input neurons
and one output neuron and the same training parameters.

MLP topology obtained
results a) b) c) d)
ttrain (s) 16.7 14.6 15.5 15.3

pclassif (%) 89.97 92.81 82.31 79.25

Table 1: Results obtained using four different MLP
topologies

The best results in this case were obtained by using the
MLP classifier with tansigmoidal neurons in the first
layer and with linear nodes in the output layer. For this
reason, all the experiments to be presented in this
subsection will use this architecture.

The design of a neural classifier which presents
redundancy in the output layer can be a useful option in
some cases. For the proposed classification task, this
would be the case of an MLP network with more than
one neuron in the output layer. The following results
were obtained by using a network with two output linear
neurons (and two input tansigmoidal neurons):

- Probability of correct classification, pclassif =
92.62 %;

- Probability to detect an error (security), pdetect =
96.64 %;

- Training time, ttrain = 84.8 s.

The usage of such a redundant architecture leads to a
more secure classifier, the probability of correct
classification being close to the one of a non-redundant
topology; the disadvantage is the increased time
necessary for training the network.

A large set of experiments was performed in order to
study the dependence of the quality of an MLP classifier
on the number of input neurons and on the number of
epochs used in training; the obtained results are
presented in the next section. In the case of varying the
number of input neurons it is interesting to observe the
position of the decision boundary of the MLP classifier
versus the Bayesian one (figure 3).

a

b

c

Figure 3: The boundary of the MLP classifier (dashed
line) versus the Bayesian boundary (solid line):

a. MLP network with 2 input neurons;
b. MLP network with 8 input neurons;
c. MLP network with 10 input neurons.

Usage of an RBF-Type Classifier

The standard topology of an RBF neural network
exhibits, on the first layer, a collection of nodes with a
Gaussian-type transfer function, the second layer
consisting of linear neurons.

The design of an RBF neural network can be understood
as a curve-fitting problem in a high-dimensional space;
the learning process is equivalent to finding a surface
that provides the best fit to the training data, according to
the desired accuracy; the spread of radial basis functions
determines the smoothness of the approximation. The
training algorithm adds neurons to the input layer of the
network until the specified mean squared error goal is
met.

Figure 4 reveals the decision boundary of an RBF
network versus the Bayesian one, when using the RBF
architecture as a classifier for the previously mentioned
task. Unlike the MLP case, the boundary imposed by an
RBF classifier has nearly the same shape, regardless the
number of the radial neurons.

a

b

Figure 4: The boundary of the RBF classifier (dashed
line) versus the Bayesian boundary (solid line):

a. RBF network with 2 input neurons;
b. RBF network with 5 input neurons

As for the MLP architectures, the influence of training
parameters of an RBF network on the quality of
classification is presented in the next section.

COMPARISON BETWEEN MLP- AND RBF-
TYPE CLASSIFIERS

MLP and RBF networks are both universal
approximators, property which can be used, as shown, in
classification tasks. For this reason it is worth to develop
a comparative study with regard to their exploitation as
classifiers. Therefore, RBF and MLP classifiers have
been constructed for the same classification task, namely
that one considered in the previous section.

All the results commented below have been obtained by
batch training, considering that each class is known by
500 patterns. To ensure the relevance of the
comparisons, all the training conditions of MLP
networks have used a unique value for the error goal
(namely 0) and a unique value (namely 1) to initialize
weights and biases. Interest will first focus on the main

features of training procedures, and, afterwards,
emphasis is placed on the quality of the designed
classifiers. All the simulation experiments were
conducted under Neural Network Toolbox provided in
Matlab software (The MathWorks Inc. 2001)

Comments on Network Training

The results of network training are analyzed for various
conditions used in the learning process. Thus, for MLP
topology, the achieved mean squared error is regarded
as the result of training (which depends on two key
parameters: the number of training epochs and the
number of tansigmoidal neurons). For RBF architecture,
the number of radial neurons is regarded as the result of
training (which depends on two key parameters: the
mean squared error goal and the spread of radial
functions). This point of view in understanding the role
of the training conditions allows a comprehensive
interpretation based on the three dimensional plots given
in figure 5 (a – for MLP network, b – for RBF network).

a

b

Figure 5: Graphical interpretation of the key elements
characterizing the network training:

a. achieved mean squared error of MLP network
depending on number of epochs and number of

sigmoidal neurons;
b. number of input neurons of RBF network depending

on mean squared error goal and spread of radial functions.

From figure 5.a, one can observe that for the MLP
classifier the result of training (obtained mean squared
error) is influenced in the first instance by the number of
sigmoidal neurons, for a medium number of epochs
(greater than 200).

In order to compare the computation requested by the
training of MLP- and RBF-type classifiers, figure 6
displays the dependence of the training time on the same
training parameters previously considered. The
numerical values of training times make sense only if all
experiments are conducted on the same computer and in
similar conditions. For MLP network, the training time
increases when the number of sigmoidal neurons and/or
the number of training epoch increase (figure 6.a). The
plots in figures 5.b and 6.b have nearly the same shape
because the time necessary to train an RBF network
depends on the number of radial neurons to be added in
order to obtain the desired error. Beside the probability
of correct classification, the training time reflects the
quality of the constructed classifier, which is discussed
in the next subsection.

a

b

Figure 6: Dependence of the training time on the
training parameters:

a. number of epochs and number of sigmoidal
neurons for MLP network;

b. mean squared error goal and spread of radial
functions for RBF network.

Comments on Classification Quality

The probability of correct classification of the trained
classifiers is evaluated in terms of simulation results
obtained for input vectors which have not been presented
to the network during the training session. A graphical
interpretation of these results can be given along the
same lines as in the previous subsection, by considering
the three-dimensional plots depicted in figure 7.
According to our current interest, the surfaces plotted in
these figures reflect the dependence on the training
conditions (investigated in the previous subsection) of
the classifier main quality, expressed (for both RBF and
MLP networks) as the probability of correct
classification resulting from simulation. The plots given
in figure 7, together with those presented in figure 6,
allow comparing the quality of the MLP- and RBF-type
classifiers from the point of view of the probability of
correct classification and of the training time,
respectively.

a

b

Figure 7: Graphical interpretation of the neural
classifiers’ quality depending on the training parameters:
a. probability of correct classification of MLP network

depending on number of epochs and number of
tansigmoidal neurons;

b. probability of correct classification of RBF network
depending on mean squared error goal and spread of

radial functions.

The direct visual examination of figure 7.a shows that
the quality of MLP classifier decreases by using a large
number of training epochs, fact which suggests that the
size of the training data set is too small for the network
to get a correct generalization. In accordance with
figures 5.a and 7.a, it is worth noticing that the smaller
achieved error in training does not guarantee that the
obtained classifier is the best. Anyway, the quality of the
MLP classifier is not significantly affected by the
training parameters, the difference between minimum
and maximum probability of correct classification being
smaller than 1%.

By using the RBF architecture, one can obtain a better
probability of correct classification, but an inadequate
choice of training parameters of the radial basis network
can lead to bad performances of this classifier.
Moreover, by comparing the plots in figures 5.b and 7.b,
one can observe that an RBF classifier with many input
neurons can have nearly the same quality as an RBF
classifier with a significantly smaller number of neurons.
All the remarks referring to MLP- and RBF- type
classifiers are actually founded on precise numerical
information, used for constructing the graphical plots.

When using a large set of training data is available, the
MLP network generalizes well, and the result of an
accurate training is usually able to provide trustable
information about the quality of the obtained classifier.
The situation is presented in figure 8, using 5000 vectors
from each class in order to train the network. As
expected, the training time is approximately ten times
bigger than in the previous case. Unfortunately, in real-
life experiments a large set of training data it might be
difficult to obtain or improper to use because of the
required computation time.

Figure 8: Probability of correct classification of an MLP
network (trained using a large set of data) depending on
number of epochs and number of tansigmoidal neurons

The remarks issuing from the presented comparison can
be compared with the conclusions of a study involving
the usage of MLP- and RBF- architectures in
identification tasks (Kloetzer et al. 2001, 2002).

CONCLUSIONS

The purpose of this paper was to illustrate the usage of
supervised trained neural networks in classification
tasks. The problem chosen in order to construct neural
classifiers reflects a situation that can occur in real-life
experiments, namely the need to distinguish between
overlapping and Gaussian distributed classes. The
experiments were conducted in a manner that makes
possible the development of an amply commented
comparative study between MLP- and RBF- type
classifiers. The MLP network provides a good quality
and its performance is not much influenced by the fine
tuning of the training parameters, making this type of
classifier the optimum tool for less experienced users. It
is possible to obtain a better RBF classifier (from the
point of view of complexity and probability of correct
classification), but this requires either many tests or a
wide experience.

REFERENCES

Cybenko, G., 1989, “Approximation by superpositions
of a sigmoidal function”, Mathematics of Control,
Signals and Systems, vol. 2, pp. 303 – 314.

Duda, R.O. and Hart, P.E., 1973, Pattern Classification
and Scene Analysis, New York: Wiley.

Fukunaga, K., 1990, Statistical Pattern Recognition, 2nd
Edition, New York: Academic Press.

Haykin, S., 1999, Neural Networks. A Comprehensive
Foundation, 2nd Edition, New Jersey: Prentice Hall.

Kloetzer, M., Ardelean, D. and Pastravanu, O., 2001,
“Developing Simulink tools for teaching neural-net-
based identification”, Med’01: The 9th Mediterranean
Conference on Control and Automation, pp. 63
(abstract), paper on CD-ROM.

Kloetzer, M., Ardelean, D. and Pastravanu, O., 2002,
“Crearea unei biblioteci Simulink pentru exploatarea
retelelor neuronale în identificare”, Revista Româna de
Informatica si Automatica, vol. 12, no. 2, pp. 53 – 64.

Lippmann, R.P., 1987, “An introduction to computing
with neural nets”, IEEE ASSP Magazine, vol. 4, pp. 4 –
22.

Park, J. and Sandberg, I.W., 1991, “Universal
approximation using radial-basis-function networks”,
Neural Computation, vol. 3, pp. 246 – 257.

Richard, M.D. and Lippmann, R.P., 1987, “Neural
network classifiers estimate Bayesian a posteriori
probabilities”, Neural Computation, vol. 3, pp. 461 –
483.

* * *, The MathWorks Inc., 2001, Neural Network
Toolbox 4.0.1, MATLAB 6.1 (Release 12.1).

