
HIGH PERFORMANCE ALGORITHMS
IN FEEDFORWARD NEURAL NETWORKS BACKPROPAGATION TRAINING

/XPLQL D *LXUJLX� Assistent Professor, Land Forces Academy “Nicolae %�OFHVFX´� Sibiu, 5HYROX LHL ���� WHO�

0040269432990/1413, fax 0040269215554, email: lumigee@actrus.ro

Abstract. Neural networks, as a field, are becoming an
important and useful tool for a wide variety of problem
areas. As our understanding of the methodology
increases through research, we become better equipped
to address tasks on the scale of practical, real-world
problems. Research contributions resulting from the
study of biological systems, while extremely valuable in
finding new research directions, place additional
demands and burdens on the task of training. Thus,
efficient training methods are essential for the field to
progress. In this paper we will discuss several high
performance algorithms used in backpropagation
training of the feedforward neural networks and
present comparative results obtained in MATLAB
implementation.

INTRODUCTION

The two classic backpropagation training algorithms:
gradient descent and gradient descent with momentum are
often too slow for practical problems. High performance
algorithms can converge from ten to one hundred times
faster than the classic algorithms. These faster algorithms
fall into two main categories. One category uses heuristic
techniques, which were developed from an analysis of the
performance of the standard steepest descent algorithm,
and the other category of fast algorithms uses standard
numerical optimization techniques. In the first category are
included the heuristic techniques of variable learning rate
backpropagation and resilient backpropagation; in the
second category are included the techniques of conjugate
gradient, quasi-Newton algorithms and Levenberg
Marquardt algorithm.

HEURISTIC TECHNIQUES

The performance of the steepest descent
algorithm can be improved if we allow the learning rate to
change during the training process. An adaptive learning
rate will attempt to keep the learning step size as large as
possible while keeping learning stable. The learning rate is
made responsive to the complexity of the local error
surface.
An adaptive learning rate requires some changes in the
training procedure
used by traingd. First, the initial network output and error
are calculated. At each epoch new weights and biases are
calculated using the current learning rate. New outputs and
errors are then calculated.

As with momentum, if the new error exceeds the old error
by more than a predefined ratio (max_perf_inc, typically
1.04), the new weights and biases are discarded. In
addition, the learning rate is decreased (typically by
multiplying by lr_dec = 0.7). Otherwise, the new weights,
etc., are kept. If the new error is less than the old error, the
learning rate is increased (typically by multiplying by
lr_inc = 1.05).
Backpropagation training with an adaptive learning rate is
implemented with the function traingda, which is called
just like traingd, except for the additional training
parameters max_perf_inc, lr_dec, and lr_inc.
A two-layer network is called to train with this code:
x = [-1 -1 2 2;0 5 0 5];
y = [-1 -1 1 1];
net=newff(minmax(x),[3,1],{'tansig','purelin'},'traingda');
net.trainParam.show = 50;
net.trainParam.lr = 0.05;
net.trainParam.lr_inc = 1.05;
net.trainParam.epochs = 300;
net.trainParam.goal = 1e-5;
[net,tr]=train(net,x,y);
In the command window the result is:
TRAINGDA, Epoch 0/300, MSE 0.69466/1e-005,
Gradient 2.29478/1e-006
TRAINGDA, Epoch 30/300, MSE 8.57235e-006/1e-005,
Gradient 0.00369012/1e-006
TRAINGDA, Performance goal met.
The result of the simulation
res=sim(net, x) is:
res =
 -1.0008 -0.9997 1.0051 0.9972
The function traingdx combines adaptive learning rate
with momentum training. It is invoked in the same way as
traingda, except that it has the momentum coefficient mc
as an additional training parameter.
Consider the same code with the additional parameter:
net.trainParam.mc=0.9
The training response will be:
TRAINGDX, Epoch 0/300, MSE 1.71149/1e-005,
Gradient 2.6397/1e-006
TRAINGDX, Epoch 50/300, MSE 0.00191135/1e-005,
Gradient 0.0627063/1e-006
TRAINGDX, Epoch 56/300, MSE 6.39208e-006/1e-005,
Gradient 0.00353153/1e-006
TRAINGDX, Performance goal met.
The training response in the case of traingd function is for
the same network:

TRAINGD, Epoch 0/300, MSE 1.21966/1e-005, Gradient
1.77008/1e-010
TRAINGD, Epoch 50/300, MSE 0.40967/1e-005,
Gradient 0.370667/1e-010
TRAINGD, Epoch 100/300, MSE 0.0193925/1e-005,
Gradient 0.129972/1e-010
TRAINGD, Epoch 150/300, MSE 0.00354209/1e-005,
Gradient 0.0450151/1e-010
TRAINGD, Epoch 200/300, MSE 0.00091316/1e-005,
Gradient 0.0217073/1e-010
TRAINGD, Epoch 250/300, MSE 0.000255977/1e-005,
Gradient 0.0112875/1e-010
TRAINGD, Epoch 300/300, MSE 7.39654e-005/1e-005,
Gradient 0.00602179/1e-010
TRAINGD, Maximum epoch reached, performance goal
was not met.
Multilayer networks use sigmoid transfer functions in the
hidden layers. Since they compress an infinite input range
into a finite output range these functions are often called
“squashing” functions. The slope of sigmoid functions
must approach zero as the input gets large and this causes
a problem when training with steepest descent: the
gradient can have a very small magnitude, this cause small
changes in the weights and biases and the weights and
biases will be far from their optimal values.
The purpose of the resilient backpropagation (Rprop)
training algorithm is to eliminate these harmful effects of
the magnitudes of the partial derivatives.
The magnitude of the derivative has no effect on the
weight update and only the sign of the derivative is used to
determine the direction of the weight update. The size of
the weight change is determined by a separate update
value. The update value for each weight and bias is
increased by a factor delt_inc whenever the derivative of
the performance function with respect to that weight has
the same sign for two successive iterations. The update
value is decreased by a factor delt_dec whenever the
derivative with respect that weight changes sign from the
previous iteration. If the derivative is zero, then the update
value remains the same. Whenever the weights are
oscillating the weight change will be reduced. If the
weight continues to change in the same direction for
several iterations, then the magnitude of the weight change
will be increased.
The training code for the same network is:
x = [-1 -1 2 2;0 5 0 5];
y = [-1 -1 1 1];
net=newff(minmax(x),[3,1],{'tansig','purelin'},'trainrp');
net.trainParam.show = 10;
net.trainParam.epochs = 300;
net.trainParam.goal = 1e-5;
[net,tr]=train(net,x,y);
TRAINRP, Epoch 0/300, MSE 2.66524/1e-005, Gradient
4.39122/1e-006
TRAINRP, Epoch 10/300, MSE 0.00150934/1e-005,
Gradient 0.110215/1e-006

TRAINRP, Epoch 14/300, MSE 9.64232e-006/1e-005,
Gradient 0.00224347/1e-006
TRAINRP, Performance goal met.

NUMERICAL OPTIMIZATION TECHNIQUES

In the conjugate gradient algorithms a search is
performed along conjugate directions, which produces
generally faster convergence than steepest descent
directions. In most of the training algorithms that we
discussed up to this point, a learning rate is used to
determine the length (step size) of the weight update. In
most of the conjugate gradient algorithms, the step size is
adjusted at each iteration. To determine the step size,
which minimizes the performance function along that line,
a search is made along the conjugate gradient direction.
There are different search functions who can be used
interchangeably with a variety of the training functions.
Some search functions are best suited to certain training
functions, although the optimum choice can vary
according to the specific application. An appropriate
default search function is assigned to each training
function, but this can be modified by the user.
All of the conjugate gradient algorithms start out by
searching in the steepest descent direction (negative of the
gradient) on the first iteration.

p0=-g0

A line search is then performed to determine the optimal
distance to move along the current search direction:

xk+1=xk+αkpk

The next search direction is determined so that it is
conjugate to previous search directions.

pk=-gk+βkgk-1

The general procedure for determining the new search
direction is to combine the new steepest descent direction
with the previous search direction:
The various versions of conjugate gradient are
distinguished by the manner in
which the constant is computed. For the Fletcher-Reeves
update the procedure is

1k

T

1k

k
T
k

gg

gg
k

−−

=β

This is the ratio of the norm squared of the current
gradient to the norm squared of the previous gradient.
The following code reinitialize the previous network and
retrain it using the Fletcher-Reeves version of the
conjugate gradient algorithm:
x = [-1 -1 2 2;0 5 0 5];
y = [-1 -1 1 1];
net=newff(minmax(x),[3,1],{'tansig','purelin'},'traincgf');
net.trainParam.show = 5;
net.trainParam.epochs = 300;
net.trainParam.goal = 1e-5;
[net,tr]=train(net,x,y);

The conjugate gradient algorithms are usually much faster
than variable learning rate backpropagation, and are
sometimes faster than trainrp, although the results will
vary from one problem to another.
Another version of the conjugate gradient algorithm was
proposed by Polak and Ribiére and differs from the
Fletcher-Reeves by the constant βk who is computed by

1k
T

1k

k
T

1k

gg

gg
k

−−

−∆
=β

This is the inner product of the previous change in the
gradient with the current gradient divided by the norm
squared of the previous gradient.
The previous code change only in line:
net=newff(minmax(x),[3,1],{'tansig','purelin'},'traincgp');
and the result is:
TRAINCGP-srchcha, Epoch 0/300, MSE 4.11391/1e-005,
Gradient 4.5572/1e-006
TRAINCGP-srchcha, Epoch 5/300, MSE 0.00129061/1e-
005, Gradient 0.0588631/1e-006
TRAINCGP-srchcha, Epoch 7/300, MSE 1.54548e-
006/1e-005, Gradient 0.00317448/1e-006
TRAINCGP, Performance goal met.

The training parameters for traincgp are the same as those
for traincgf. The default line search routine srchcha is used
in this example.

The method of Charalambous srchcha was designed to be
used in combination with a conjugate gradient algorithm
for neural network training. It is a hybrid search and it uses
a cubic interpolation, together with a type of sectioning.
The traincgp routine has performance similar to traincgf
and it is difficult to predict which algorithm will perform
best on a given problem.
An alternative to the conjugate gradient methods for fast
optimization is Newton’s method. The basic step of
Newton’s method is:

xk+1=xk-Ak
-1gk

where is the Hessian matrix (second derivatives) of the
performance index at the current values of the weights and
biases.
There is a class of algorithms that is based on Newton’s
method, but which doesn’t require calculation of second
derivatives. These are called quasi-Newton (or secant)
methods. They update an approximate Hessian matrix at
each iteration of the algorithm. The update is computed as
a function of the gradient. The quasi-Newton method that
has been most successful in published studies is the
Broyden, Fletcher, Goldfarb, and Shanno (BFGS) update.
This algorithm has been implemented in the trainbfg
routine.
The previous network is reinitialized and retrained using
the BFGS quasi-Newton algorithm.

TRAINBFG-srchbac, Epoch 0/300, MSE 0.0535683/1e-
005, Gradient 0.569755/1e-006
TRAINBFG-srchbac, Epoch 5/300, MSE 8.68495e-
006/1e-005, Gradient 0.00641884/1e-006
TRAINBFG, Performance goal met.
This algorithm requires more computation in each iteration
and more storage than the conjugate gradient methods,
although it generally converges in fewer iterations.
Like the quasi-Newton methods, the Levenberg-Marquardt
algorithm was designed to approach second-order training
speed without having to compute the Hessian matrix.
When the performance function has the form of a sum of
squares (as is typical in training feedforward networks),
then the Hessian matrix can be approximated as

H = JT J
and the gradient can be computed as

g = JT e

where J is the Jacobian matrix that contains first
derivatives of the network errors with respect to the
weights and biases, and e is a vector of network errors.
The Levenberg-Marquardt algorithm uses this
approximation to the Hessian matrix in the following
Newton-like update:

[] eJIJJxx T1T
k1k

−
+ µ+−=

When the scalar µ is zero, this is just Newton’s method,
using the approximate Hessian matrix. When µ is large,
this becomes gradient descent with a small step size. µ is
decreased after each successful step and is increased only
when a tentative step would increase the performance
function: the performance function will always be reduced
at each iteration of the algorithm.
The training parameters for trainlm are epochs, show,
goal, time, min_grad, max_fail, mu, mu_dec, mu_inc,
mu_max, mem_reduc. The parameter mu is the initial
value for µ. This value is multiplied by mu_dec whenever
the performance function is reduced by a step. It is
multiplied by mu_inc whenever a step would increase the
performance function. If mu becomes larger than mu_max,
the algorithm is stopped. The parameter mem_reduc is
used to control the amount of memory used by the
algorithm.
net=newff(minmax(x),[3,1],{'tansig','purelin'},'trainlm');
net.trainParam.show = 5;
net.trainParam.epochs = 300;
net.trainParam.goal = 1e-5;
[net,tr]=train(net,x,y);

TRAINLM, Epoch 0/300, MSE 1.05016/1e-005, Gradient
6.23194/1e-010
TRAINLM, Epoch 3/300, MSE 9.00678e-007/1e-005,
Gradient 0.00542298/1e-010
TRAINLM, Performance goal met.
This algorithm appears to be the fastest method for
training moderate-sized feedforward neural networks (up
to several hundred weights). It also has a very efficient
MATLAB implementation, since the solution of the matrix
equation is a built-in function, so its attributes become
even more pronounced in a MATLAB setting.

CONCLUSIONS

It is very difficult to know which training
algorithm will be the fastest for a given problem. It will
depend on many factors, including the complexity of the
problem, the number of data points in the training set, the
number of weights and biases in the network, the error
goal, and whether the network is being used for pattern
recognition (discriminant analysis) or function
approximation (regression). In general, on networks which
contain up to a few hundred weights the Levenberg-
Marquardt algorithm will have the fastest convergence;
this advantage is noticeable if very accurate training is
required. The next fastest algorithms are the quasi-Newton
methods on moderate size networks. The BFGS algorithm
does require storage of the approximate hessian matrix,
but is generally faster than the conjugate gradient
algorithms. Rprop algorithm do not require a line search
and have small storage requirements; he is reasonably fast,
and very useful for large problems. The variable learning
rate algorithm is usually much slower than the others
methods, has about the same storage requirements and can
be usefull for some problems when using early stopping is
better to converge more slowly.

REFERENCES

Dumitrescu D., 2003, Principiile LQWHOLJHQ HL artificiale,
Editura $OEDVWU�� Cluj Napoca
1�VWDF '� ,�� ����� 5H HOH neuronale artificiale, Editura
Printech, %XFXUHúWL
http://www.mathworks.com
http://www.math.uvt.ro

