
KNOWLEDGE EXTRACTION WITH COMPETITIVE NEURAL NETWORKS
IN MATLAB ENVIRONMENT

Luminita Giurgiu, Assistent Professor, Land Forces Academy “Nicolae Balcescu”, Sibiu, Revolutiei 3-5, tel.
0040269432990/1413, fax 0040269215554, email: lumigee@actrus.ro

Abstract. The desire to develop computer systems that
can learn by themselves and improve decision-making
is an ongoing goal of information technology.
The field of artificial neural networks is a powerful
emerging technology that can be used to efficiently
process information to achieve greater knowledge and
improved decision making. Neural networks self-adapt
to learn from information, providing powerful models
representing knowledge about a specific problem. In
this paper we discuss the process of unsupervised
learning in the competitive artificial neural networks
and present the Matlab environment for their
implementation.

INTRODUCTION

Creating networks, which find patterns in data
sets without supervision, implies a process of unsupervised
learning. Behind unsupervised learning is  competition.

Self-organizing  networks can learn to detect
regularities and correlations in their input and adapt their
future responses to that input accordingly. Such networks
are competitive networks and Self-organizing maps.

Competitive networks are two layers and fully
connected. The weights on the connections are normally
set to random positive values in the range 0 to 1. As usual,
inputs are applied to the input layer, and the outputs from
the output layer nodes are considered. Now, there are no
known corresponding correct outputs, as was the case in
the supervised learning situation. In this case, have a
contest. A node with its weight vector closest to the vector
of inputs is declared the winner, and only its weights are
adjusted by some training algorithm. This process is then
repeated for each input vector, over and over, for a large
number of cycles. Different inputs produce different
winners. Eventually, a node becomes associated with a
number of input vectors in the data set. Another node
becomes associated with another group of input vectors.
Thus nodes become associated with patterns in the input
data set. (Some nodes may not become associated with
anything. Some patterns may become associated with
several nodes.) The weight vector for a node becomes
more or less equal to the vector representing the average of
the data vectors for a particular pattern in the data set.
Since each weight vector is associated with an output
node, one node has become associated with each grouping
in the input data. If a new data vector is applied to the
inputs, only one of the output nodes will go 'on', telling
which group the new vector belongs to. Interpreting the

meaning of each group, the semantics, is the job of the
human user of the net.

Self-organizing maps (SOM) not only categorizes
the input data, it recognizes which input patterns are close
to each other. The key idea introduced by Kohonen is the
idea of neighborhood. Each node has a set of neighbors.
When this node wins a competition (the same as in the
simple competitive net), not only is its weights adjusted,
but those of the neighbors are also changed. They are not
changed as much though. The further the neighbor is from
the winner, the smaller its weight change. Furthermore, as
training goes on, the neighborhood gradually shrinks. At
the end of training, the neighborhoods have shrunk to zero
size. The neighborhood idea immensely increases the
power of the network. The network can create a kind of
contour map of the patterns in the input data. Now the
position of nodes becomes important. Neighbor nodes are
associated with patterns in the input data set that are
somehow 'close' together. Thus not only are patterns in the
data set recognized, some information about the
relationships among these patterns is also displayed. Of
course there is still the problem of interpretation, of the
meaning of these patterns and the relationships among
them. Only humans can make such interpretations. Still,
the Kohonen SOM is an amazing tool for decoding
patterns and relationships in data, patterns that would
otherwise remain invisible.

COMPETITIVE NETWORKS

Neurons in a competitive layer learn to represent
different regions of the input space where input vectors
occur.

Competitive unsupervised learning determines
the neurons in a competitive layer distribute themselves to
recognize and categorize presented input vectors.

The network’s architecture consist of an input and
a competitive layer where the competitive transfer
function accepts a net input vector for a layer and returns
neuron outputs of 0 for all neurons except for the winner.
The winner neuron is associated with the most positive
element of net input. The elements of net input are
computed by finding the distance between the input vector
and vectors formed from the rows of the input weight
matrix and adding the biases.

Each neuron competes to respond to an input
vector and the neuron whose weight vector is closest to
this, gets the highest net input and wins the competition. A



learning rule is used to adjust weights so as the winning
neuron  moves closer to the input.

The Kohonen learning rule and Bias learning rule
are implemented by learnk and learncon function
respectively. The Kohonen learning rule adjusts the
weights of the winning neuron (the i th) in competitive
layer and the neuron whose weight vector was closest to
the input vector (x) is updated to be even closer:

iw(n)= iw(n-1)+α(x(n) – iw(n-1)) (1)

The next time a similar vector is presented, the
winning neuron is more likely to win the competition, and
less likely to win when a very different input vector is
presented. Bias learning rule is used because of the
limitation of competitive networks consisting in that some
neurons may not always get allocated. Starting out far
from any input vectors, it is possible that some neuron
weight vectors never win the competition. The neurons
that only win the competition rarely take advantage over
neurons, which win often by adding positive bias to the
negative distance. Running average of neuron output is
kept and used to update the biases with the learning
function learncon so that the biases of frequently will get
smaller, and biases of infrequently active neurons will get
larger. Biases force each neuron to classify the same
percentage of input vectors and resolve the problem of
dead neurons.
Competitive network simulation in Matlab Environment:
% The training set S - clustered test data points
std_dev = 0.05;   % standard deviation of each %cluster
p = 20;                 % number of points/ cluster
cl = 10;        % number of clusters
z = [0 1; 0 1];      % bounds of cluster centers
S = nngenc(z, cl, p, std_dev);
% Creating a competitive neural network
%(function newc)
% newc takes three input arguments: (1) an Rx2
% matrix of min and max values for
% R input elements, (2) the number of neurons
% in competitive layer, (3) the learning rate.
netc=newc([0 1; 0 1], 10, .1);
%  Setting the number of epochs to train
% Training the competitive layer - train for %
% competitive networks uses the training
%  function trainwb1
netc.trainParam.epochs=1000;
netct=train(netc,S);
% In the process of training, weight vectors will
% be trained so that they occur centered in
% clusters of input vectors . That means that
% during training process each neuron in the
% layer closest to a group of input vectors and
% adjusts its weight vector toward those
% input vectors. Every cluster of similar input
% vectors has a neuron that outputs 1 when a
% vector in the cluster is presented, and 0 at all
% other times.
plot (S(1,:), S(2,:),'+r'); %representing
% with ‘+’ markers the input vectors

w = netct.IW{1};
plot (w(:,1), w(:,2), 'og'); % representing
% with ‘o’ markers the weights after training
% Presenting the network the input vector x and
% trying to classify him
% The output y will indicate which neuron is responding
% ‘result’ indicates the class the input belongs
x = [0; 0.5];
y = sim(netct, x)
result=vec2ind(y)

SELF ORGANIZING MAPS

Self-organizing  maps (SOM) learn to classify
input vectors according to how they are grouped in the
input space. The difference from competitive layers is that
neighboring neurons in the self-organizing map learn to
recognize neighboring sections of the input space. Self-
organizing maps learn the distribution (as do competitive
layers) and topology of the input vectors they are trained
on.

In the layer of self-organizing map, the neurons
are arranged originally in physical positions according to a
topology function. There are functions which can arrange
the neurons in a grid, hexagonal, or random topology
(gridtop, hextop, randtop) and distance functions which
calculate distances between neurons  from their positions
(dist, boxdist, linkdist ,mandist).

A self-organizing feature map network identifies
a winning neuron (i* ) using the same procedure as
employed by a competitive layer, but instead of updating
only the winning neuron, all neurons within a certain
neighborhood Ni

* (d) of the winning neurons are updated
using the Kohonen rule.

The neighborhood Ni
* (d) contains the indices for

all of the neurons that lie within a radius d of the winning
neuron and when a vector x is presented, the weights of
the winning neuron and its close neighbors move towards
x. After training process neighboring neurons will have
learned vectors similar to each other.
The performance of the network is not sensitive to the
exact shape of the neighborhoods.

The SOM’s architecture is like that of a
competitive network except no bias is used.  The
competitive transfer function produces a 1 for output
element corresponding to the winning neuron. All other
output elements  are  0, but neurons close to the winning
neuron are updated along with the winning neuron.
SOM simulation in Matlab environment:
% Classification of 1000 two-element vectors
%occurring in a rectangular shaped vector space.
% The neurons will arrange themselves in a two-
dimensional grid
X = rands(2,1000);
plot(X(1,:),X(2,:),'+g')
hold on;
% Creating a layer of 30 neurons spread out in a 5 by 6
grid:
som = newsom([0 1; 0 1],[5 6],’gridtop’);



% All the neurons have initially the same weights in the
%middle of the vectors
plotsom(som.iw{1,1},som.layers{1}.distances)
% after training,  the layer of neurons has begun to self-
%organize
% Each neuron classifies a different region of the input
space
% adjacent (connected) neurons respond to adjacent
%regions.
net.trainParam.epochs = 100;
somt = train(som,X);
plotsom(somt.iw{1,1},somt.layers{1}.distances)
display(som.iw{1,1});
%  using sim to classify vectors by giving them to the
%network
%  neuron  "y" responded with a "1", so “test” belongs to
%that class.
test = [0.1;0.5];
y = sim(somt,test)
Here is what the self-organizing map looks like before
training:

           Fig.1: Before training
Here is what the self-organizing map looks like after 1000
epochs of training:

Fig.2: After 1000 epochs of training
After training process map is more evenly distributed
across the input space.
The weights of neurons and the result of the classification
displayed in the command window are:

weights =
 -0.7805   -0.6823
   -0.7690   -0.4027
   -0.7767   -0.0035

   -0.7681    0.3984
   -0.7218    0.6952
   -0.5250   -0.6942
   -0.5320   -0.3897
   -0.5260   -0.0852
   -0.4508    0.4013
   -0.4195    0.7436
   -0.1549   -0.7265
   -0.2026   -0.4436
   -0.1490   -0.0263
   -0.1150    0.4703
   -0.1246    0.7537
    0.1202   -0.7022
    0.1030   -0.3672
    0.1501   -0.0260
    0.1515    0.4201
    0.1169    0.7446
    0.4621   -0.7398
    0.4707   -0.4103
    0.4339    0.0076
    0.4353    0.3642
    0.4566    0.7146
    0.7226   -0.7031
    0.7622   -0.4325
    0.7085   -0.0848
    0.7067    0.3999
    0.6909    0.7136
y =
   (19,1)        1
The self-organizing map weight learning function

is learnsom. The network identifies the winning neuron
first and then, the weights of the winning neuron and the
other neurons in its neighborhood are moved closer to the
input vector at each learning step using the self-organizing
map learning function. During training the learning rate
and the neighborhood distance used to determine which
neurons are in the winning neuron’s neighborhood are
altered  through two phases: ordering and tuning phase. In
ordering phase which lasts for the given number of steps
the neighborhood distance starts as the maximum distance
between two neurons, and decreases to the tuning
neighborhood distance. On the other hand the learning rate
starts at the ordering-phase learning rate and decreases
until it reaches the tuning-phase learning rate. As the
neighborhood distance and learning rate decrease over this
phase, the neurons of the network typically order
themselves in the input space with the same topology in
which they are ordered physically. In tuning phase which
lasts  for the rest of training or adaption the neighborhood
distance stays at the tuning neighborhood distance, (which
should include only close neighbors , typically 1.0). The
learning rate continues to decrease from the tuning phase
learning rate, but very slowly. The small neighborhood
and slowly decreasing learning rate fine-tune the network,
while keeping the ordering learned in the previous phase
stable. The number of epochs for the tuning part of
training (or time steps for adaptation) should be much
larger than the number of steps in the ordering phase,
because the tuning phase usually takes much longer.



CONCLUSIONS

As with competitive layers, the neurons of a self-
organizing map will order themselves with approximately
equal distances between them if input vectors appear with
even probability throughout a section of the input space.
Also, if input vectors occur with varying frequency
throughout the input space, the feature map layer tends to
allocate neurons to an area in proportion to the frequency
of input vectors there. Self-organizing maps differ from
conventional competitive learning in terms of which
neurons get their weights updated: instead of updating
only the winner, feature maps update the weights of the

winner and its neighbors, so the neighboring neurons tend
to have similar weight vectors and to be responsive to
similar input vectors. After the training process the map is
rather evenly spread across the input space.

REFERENCES

Dumitrescu D., 2003, Principiile inteligentei artificiale,
Editura Albastra, Cluj Napoca
Nastac D. I., 2002, Retele neuronale artificiale, Editura
Printech, Bucuresti
http://www.mathworks.com
http://www.math.uvt.ro


