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Abstract: Aeroelastic problems of light weight 
structures of modern aerospace vehicles are the result of 
interactions between aerodynamics, structural and 
inertial forces. The most dangerous and also investigated 
aeroelastic phenomenon is the flutter, i.e. a self-excited 
oscillation of the elastic structure under the action of the 
aerodynamic loads. Flutter instabilities often exhibit an 
explosive behavior that causes a sudden change in the 
stability of the aeroelastic system despite only a small 
change in flight condition and lead to the catastrophic 
failure of the structure. Consequently, flutter prevention 
is an important design task. The aim of this paper is to 
present the design of a control able to suppress the flutter 
instability of a typical section with a trailing-edge 
control flap in a prescribed speed range. The 
mathematical model of the aeroelastic problem is based 
on the Lagrange equations of motion for the structural 
dynamics and on a quasi-steady approach of the 
generalized unsteady incompressible aerodynamic 
forces. The state vector includes the angle of attack, the 
normal displacement and their rates. The purpose of the 
control law design that is presented in this paper is to 
augment the damping of the structural modes over a 
wide range of dynamic pressure. The proposed design 
procedure uses a polytopic approximation of the 
aeroelastic system subjected to parametric uncertainty. 
The robust design problem considered here consists in 
determining a state-feedback control such that the 
closed-loop system has the poles in a prescribed domain 
for a large interval of variation of the dynamic pressure. 
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INTRODUCTION 
 
Aeroservoelastic problems of aircraft light weight 
structures are the result of interactions between 
aerodynamics, structural, inertial, actuation and control 
system dynamics. The stability properties of the 
aeroservoelastic dynamics must be investigated to 
determine a flight envelope that is clear of instabilities 
for new aircraft designs (Lind 1999). The result of an 
aeroservoelastic stability analysis is the determination of 

a flight envelope within which the aerospace vehicle 
equipped with servo controls may safely operate (Lind 
1999). In contradistinction with aeroservoelasticity, the 
aeroelasticity considers only the interaction of 
aerodynamic, inertial and structural forces (Dowell 1995, 
Lind 1999). The aeroelastic phenomena may not only 
strongly influence the structural dynamics and dynamic 
flight stability, but also the overall performance and 
controllability of the aircraft. Undoubtedly, the most 
important aeroelastic phenomenon is the flutter, i.e. a 
self-excited oscillation of the elastic structure under the 
action of the aerodynamic loads (Dowell 1995). Flutter 
instabilities often exhibit an explosive behavior that 
causes a sudden change in stability despite only a small 
change in flight condition. However, we notice here that 
the mechanisms associated with flutter may be different 
from those associated with aeroservoelastic instabilities. 
Until now, several methods for characterizing 
aeroservoelastic instabilities and/or flutter conditions 
have been developed and are continually improved. 
In this paper we will refer only to aeroelastic phenomena 
which can be avoided or kept under control by some 
active measures. Since flutter tends to occur in almost all 
of the flight regimes and leads to the catastrophic failure 
of the structure, flutter avoidance is essential in getting 
certificate for newly designed aerospace vehicles. 
Further, even the aeroelastic vibrations characterized by 
weak structural damping are not critical for the structure, 
they reduce the fatigue life of the structure and thus 
increase the operational costs and also may lead to 
catastrophic failures of the aircraft components. 
Consequently, nowadays the active control is used both 
for flutter prevention and structural load alleviation.  
One of the main purposes of the control system designed 
in the present paper is to augment the damping of the 
structural modes over a wide interval of dynamic 
pressure. The problem is frequently addressed in the 
control literature, see e.g. (Lind 1999, Buschek 1993, 
Carl et al. 2000) and their references. Its difficulty 
consists in the complexity of the dependence of 
aeroelastic model with respect to the uncertain 
parameters. Although the uncertainty is essentially 
parametric, some solutions have been derived using the 
dynamic representation of the modeling uncertainty 
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(Lind 1999) for which effective design techniques are 
available. The µ -synthesis methodology is also 
frequently used, see e.g. (Lind 1999, Buschek 1993), due 
to its capability to handle simultaneously parametric and 
dynamic uncertainty. The design procedure proposed in 
the present paper uses a polytopic approximation of the 
aeroelastic system subjected to parametric uncertainty. 
The robust design problem considered here consists in 
determining a state-feedback control such that the 
closed-loop system has the poles in a prescribed domain 
for a large interval of variation of the dynamic pressure.  
This paper is organized as follows: the dynamic model 
of the aeroelastic pitch-plunge system is given in the 
second section. The third section presents the robust 
stabilization problem and numerical results. Some 
concluding remarks are given in the fourth section. 
 
 
EQUATIONS OF MOTION 
 
The aim of the paper is to present the design of a control 
able to suppress the flutter instability of a typical section 
with a trailing-edge control flap in a prescribed speed 
range. Synthesis of controllers requires a good analytical 
model of the system be available. Therefore, we have 
adopted in this work a simplified two degrees of freedom 
representation of an airplane wing as the aeroelastic 
system for which flutter suppression is desired. The 
model is the well-known typical section with trailing 
edge flap (Dowell 1995, Ko 1997, Lindt 1999). The two 
degrees of freedom are the plunge position h of the 
elastic center and the leading edge up pitch angle α about 
this center. The model is presented in Figure 1. These 
degrees of freedom correspond to the bending and 
torsion displacements of a high aspect ratio wing under 
real loads, (Dowell 1995). 
Although the flutter phenomenon is a complicated one, 
the present approach is based on a simple linear 
aeroelastic model. Thus, we assume that the two 
displacements are small and that the model parameters 
do not depend on them. Further, we assume that the 
stiffness of the flap hinge is very large compared with 
the constant stiffness kh of the plunging motion and with 
the constant stiffness kα associated with the pitching 
motion. We also assume that the flap moves 
instantaneously so that the contribution of the flap 
motion to the kinetic energy of the typical section will be 
neglected. Due to this last assumption, the flap can still 
be used as a control surface but its deflection β does not 
represent an additional degree of freedom for the 
stability and remains only a control parameter of the 
aeroelastic system’s dynamics. Finally, the external 
forces acting on the wing section are due only to the 
pressure difference distribution on the typical section. 
The equations of motion describing the plunge and pitch 
during an aeroelastic response are derived starting from 
the Lagrange equations (Dowell 1995): 
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where the set of the generalized coordinates is 
{ }Tq h α= , . The corresponding generalized forces are 

{ }, TQ L M= −  where L and M are the aerodynamic lift 
and moment, respectively, and given later below. 
 

 
Figure 1: The typical section model 

 
. The kinetic energy is given by: 
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and the potential energy of strain is: 
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Hence, the governing equations of the aeroelastic system 
under considerations are: 
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where m is the mass of the typical section, Iα is the mass 
moment of inertia about the elastic axis, xα  is the 
dimensionless distance between the elastic center and 
center of mass and b is the semichord length. Following 
(Lind 1999), in the above system on can introduce a 
structural dissipation through the structural damping 
coefficients in pitch and plunge, ch and cα, so that the 
equations become: 
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We assume that the aerodynamic lift and moment are 
determined according to a linear quasi-steady model 
(Dowell 1995, Lind 1999): 
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and 
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where ρ is the density of the air, U is the velocity of the 
free air stream, ,z mc cα α  are the lift and moment 

coefficients per angle of attack and ,z mc cβ β  are the lift 
and moment coefficients per flap deflection and a is the 
dimensionless distance between the midchord and the 
elastic axis. 
After substituting the lift and moment into the equations 
of motion we obtain the final system of two coupled 
second order differential equations: 
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The nominal values for the parameters of the aeroelastic 
system (8) are given in Table 1. These values are taken 
from literature (Lind 1999) and correspond to a model 
used for wind tunnel flutter tests. 
 

Table 1. Nominal parameters for the equation of motion 
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ROBUST STATE-FEEDBACK DESIGN AND 
NUMERICAL RESULTS 
 
In this section a state-feedback control is designed in 
order to ensure an augmented damping of the aeroelastic 
modes for a wide interval of airspeed. The dependence 
of the eigenvalues to the open-loop system with respect 
to the airspeed U is shown in Figure 2. 

 
Figure 2: The open-loop eigenvalues for 6 /U m s≥  

The eigenvalues locus for airspeeds larger than the 
nominal value 6 /U m s=  indicate that the critical 
airspeed at which the open-loop system becomes 
unstable is 11.2 /crtU m s= . This is an acceptable upper 
limit of the airspeed for the considered case study. The 
time responses of the plunge position h corresponding to 
the uncontrolled system (8), namely for 0β =  at 

6 /U m s=  and at 11 /U m s= and with the arbitrary 

chosen initial conditions (0) 0 , (0) 0 /h m h m s= =& , and 

( ) ( )0 0.1 , 0 0 /rad rad sα = α =&  are illustrated in 
Figures 3 and 4, respectively. 

 
Figure 3: Time response of ( )h t  in the open-loop case at 

6 /U m s=  

 
Figure 4: Time response of ( )h t  in the open-loop case at 

11 /U m s=  
 
The above plots show a weak damping on the whole 
interval of variation of the airspeed. A similar behavior 
can be noticed for the pitch angle α . In order to 
augment the damping of the considered flexible structure 
over the whole range of variation of the airspeed one can 
use a state-feedback  control law, namely  
 1 2 3 4k h k h k kβ α α= + + +& &  (9) 
The gains , 1,..., 4ik i =  are determined such that the 
closed-loop system is stable at all operating conditions 
between the nominal and the critical airspeed and such 
that the damping of modes is above 0.05 . Numerical 
simulations showed that these specifications can be 
accomplished on a wide range of independent variation 
of U  and ρ  but with high gain control laws. In order to 
prevent the control saturation, the stability domain D  for 
the pole placement to the resulting system has been 
chosen like showed in Figure 5. 
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Figure 5: The stability domain D  

 
The angle ϕ  in the above figure equals 

( )1 2tan 1 0.05 / 0.05− − . Four different operating 

conditions have been considered, namely the ones 
determined by the airspeed and the air density with the 
values ( )1U k±  and ( )1 kρ ± , where 0k >  is a free 
parameter. Then the convex polytope determined by 
these four operating conditions has been considered to 
approximate the parametric uncertainty of the pitch-
plunge aeroelastic system. A static feedback gain that 
quadratically D -stabilizes this polytopic plant was 
further determined (Boyd 1994). Although the quadratic 
stabilization method (Petersen 1986) guarantees the 
stability of any system inside the polytope, it may 
provide conservative results. This means that in the 
considered case study the admissible intervals of 
variation for U  and ρ  such that the resulting system is 
D -stable can be larger than the ones obtained based on 
the feasibility condition of the quadratic stabilization 
problem. The state-feedback gain obtained by quadratic 
D -stabilization of the polytopic aeroelastic system is:  
        [ ]44.1008    3.8667    1.0051   -0.0042K =        (10) 
The time variations of the plunge h and of the pitch α  
corresponding to the closed-loop system with the same 
initial conditions considered above are comparatively 
shown with the open-loop responses in Figures 6 and 7, 
respectively. 

 
Figure 6: Plunge h time responses at 6 /U m s= : open-
loop (dashed), closed-loop (solid) 

 
Figure 7: Pitch angle α  time responses at 6 /U m s= : 
open-loop (dashed), closed-loop (solid) 

 
Figure 8: Plunge h time responses at 11 /U m s= : open-
loop (dashed), closed-loop (solid) 

 
Figure 9: Pitch angle α  time responses at 11 /U m s= : 
open-loop (dashed), closed-loop (solid) 

 
Figure 10: The control β  time response at 

6 /U m s= (solid) and 11 /U m s=  (dashed) 
 
In Figures 8 and 9 are plotted the time responses of the 
same states at an airspeed 11 /U m s= , close to its 
critical value 11.2 /crtU m s= .   



The time responses presented above indicate a better 
damping of the flexible modes both at the nominal 
airspeed and in the neighborhood of its critical value. 
The control time responses corresponding to 6 /U m s=  
and to 11 /U m s=  are given in Figure 10. 
The numerical results show that in both situations 
examined the system is stabilized with acceptable 
magnitude of the control effort. 
 
 
CONCLUSIONS 
 
The paper deals with the robust control of a simple 
aeroelastic system, in which pole placement objectives 
are formulated for a wide range of the airspeed. The 
proposed method approximates the aeroelastic plant 
subjected to uncertain parameters with a polytopic one. 
The case study presented in third section shows that a 
robust design methodology based on the polytopic 
representation of the aeroelastic uncertainty can be 
effectively used in order to augment the modes damping 
on a wide range of variation to the airspeed.  
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