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Abstract. Flutter is an aeroelastic self-excited oscillation 
of aerospace vehicles structures. The motion of the 
aerospace structures can be exceptionally complicated 
due to the interactions of aerodynamic, elastic structure 
and servo effects. Consequently, flutter prevention is an 
important design task. The present paper addresses the 
problem of control synthesis for weakly damped 
aeroelastic wing structures by means of the primary 
flight controls servos. In fact, an active control for a 
typical section in unsteady incompressible flow is 
thought. First, we briefly review the reasons why the 
research activities on flutter suppression are important 
for the development of aerospace industry. Then, a 
simplified two-dimensional representation of an 
aeroservoelastic system, consisting of an airfoil with a 
trailing-edge flap, controled by a aervoactuator, is 
developed. The essential features of the airfoil’s 
aerodynamics are described by a quasi-steady model for 
the lift, pitching moment and hinge moment. The flap 
deflection is due to the active control law applied to the 
servoactuator. The control aims at suppression of flutter 
type instability by changing the wing configuration to 
cause the total aerodynamic lift and moment variations. 
The airstream speed was considered in this study as a 
parametric uncertainty. Thus a linear system with 
structured uncertainty is obtained. The optimal linear 
quadratic regulator with state observer is employed to 
get the active control of even unstable in open loop 
speeds. Thus, flutter speed can be maximized, no mater 
how much by using a succession of gains of control law. 
Two sufficient conditions concerning the stability 
robustness and performance robustness of the derived 
active control were introduced. Numerical examples that 
illustrate the design are presented, using the data of an 
experimental model in aerodynamic tunnel. 
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1. INTRODUCTION 
 
The increasing performance requirements and the 

reduction of the Direct Operating Cost (DOC) of new 
aircrafts lead to an important increase of size of 
aerospace vehicles and also optimization of structural 
masses. Aeroelastic problems of aircraft light weight 
structures are the result of interactions between 
deformations of the elastic structure and aerodynamic 
forces induced by the structure deformations. In modern 
aircrafts with any type of active control systems and 
mainly in those with fly-by-wire flight control systems, 
additional interactions between the airframe and control 
systems are possible. The impedance of powered control 
systems and the special connected flutter problems got 
rise to a new control topic: aeroservoelasticity (I. Ursu 
and F. Ursu, 2002). Indeed, the aeroelastic phenomena 
may not only strongly influence the structural dynamics 
and dynamic flight stability, but also the overall 
performance and controllability of the aircraft. Since 
flutter, which is an aeroelastic self-excited oscillation, 
tends to occur in almost all of the flight regimes, flutter 
avoidance is essential in getting certificate for newly 
designed aerospace vehicles (Dowell, 1995; Ursu et al., 
1996; Matsushita, 2001). Moreover, the aeroelastic 
vibrations characterized by weak damping reduce de 
fatigue life of the structure and consequently increase the 
DOC and also may lead to catastrophic failures of the 
aircraft components. 

The overall active control originates in aerospace 
systems. Nowadays, it is used both for flutter 
suppression and structural load alleviation. This role is 
accomplished through an additional functionality of the 
primary flight control surfaces and of their actuation 
system. A typical active control system for flutter 
suppression is designed to perform three functions: a) 
sensing the flutter mode, b) feeding back the signal, and 
c) controlling the flutter mode. Various paradigms of the 
applied control have been put to the proof; see e.g. Ohta 
et al., 1989, in which LQR approach is used; and also, 
Carl and Gojny, 
htttp:/fluid.power.net/techbriefs/papers/p
roc_gojny.pdf, with a parameter space design.    

The present paper addresses the problem of control 
synthesis for weakly damped aeroelastic wing structures 
by means of the primary flight controls servos. In order 
to outline a general approach, the aeroelastic model 



consists of a quasi-steady formulation of the 
aerodynamic lift and moment of a typical section 
(Dowell, 1995) with flap, which is connected with a 
servoactuator. So, after a brief description of the 
obtained two-degrees of freedom aeroelastic model, we 
present the methodology of active control flutter 
suppression, by designing a LQR control law based on a 
standard observer. The airstream speed was considered 
in this study as a parametric uncertainty. This means that 
a linear system with structured uncertainty is defined. 
The obtained law is employed to get the active control of 
even unstable in open loop speeds. Consequently, flutter 
speed can be maximized, no mater how much by using a 
succession of gains of control law. Two sufficient 
conditions concerning the stability robustness and 
performance robustness of the derived active control 
were introduced. Finally, numerical results for a 
representative base-case problem are reported and then 
some conclusions are drawn for this study. 
 
 
2. AEROELASTIC EQUATIONS 
 
A simplified two degrees of freedom representation of 
an airplane wing is used in this work as the aeroelastic 
system for which flutter suppression is desired. The 
model is the well-known typical section with trailing 
edge flap (Dowell, 1995; Ko, 1997; Lind and Brenner, 
1999). The two degrees of freedom are the downward 
vertical displacement h of the elastic axis and a leading 
edge up angular rotation α about this line and are 
sketched in Figure 1. These degrees of freedom 
correspond to the bending and torsion displacements of a 
high aspect ratio wing under real loads (Dowell, 1995). 

 
Figure 1. The aeroelastic model 

 
In what follows, we assume that the stiffness of the 

flap hinge is very large compared with the constant 
stiffness kh of the plunging motion and with the constant 
stiffness kα associated with the pitching motion. Further, 
we also assume that the flap moves instantaneously so 
that the contribution of the flap motion to the kinetic 
energy of the typical section will be neglected. Due to 
this last assumption, the flap can still be used as a 
control surface but its deflection β does not represent an 
additional degree of freedom for the stability and 
remains only a control parameter of the aeroelastic 
system’s dynamics. Finally, the external forces acting on 
the wing section are due only to the pressure difference 
distribution on the typical section. 

The equations of motion describing the plunge and 
pitch during an aeroelastic response are derived starting 
from the Lagrange equations (Dowell, 1995) 
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where the set of the generalized coordinates is 
{ }r,hq α= . The corresponding generalized forces are 

derived here as LQh −=  and MQ =α , where L and M 
are the lift and moment, respectively. The kinetic energy 
is given by 

22
2
1

2
1

α+α+= θθ &&&& IhmxhmT  (2) 

and the potential energy of strain is 
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Hence, the governing equations of the aeroelastic system 
under considerations are 
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where m is the mass of the typical section, Iα is the mass 
moment of inertia about the elastic axis, xα is the 
dimensionless distance between the elastic center and 
center of mass and b is the semichord length. Following 
Lind and Brenner (1999), in the above system one can 
introduce a structural dissipation through the structural 
damping coefficients in pitch and plunge, ch and cα , so 
that the equations are 
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We assume that the aerodynamic lift and moment are 
determined according to a quasi-steady model (Dowell, 
1995; Lind and Brenner,1999) 
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where ρ is the density of the air, U is the velocity of the 
free air stream, αα

mz cc ,  are the lift and moment 
coefficients per angle of attack and ββ

mz cc ,  are the lift 
and moment coefficients per flap deflection and a is the 
dimensionless distance between the midchord and the 
elastic axis. 

After substituting the lift and moment into the 
equations of motion we obtain the standard, structural 
type, second order multidimensional linear time 
invariant system 
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These equations serve as starting point for the 
development of the complete aeroservoelastic model. 
 
 
3. AGGREGATE AEROSERVOELASTIC MODEL 
 
Introducing the state equation of the actuator 

uks=β+βτ &  (9) 

where τ  is the time constant and sk  is the gain (aileron 
deflection β - current iu =: ) and then defining the state 
variables  

[ ]T54321

54321

:

:::::

x,x,x,x,xx

x,x,hx,x,hx

=

β=α==α== &&
 (10) 

one obtains the state space form of the aggregate 
structure-actuator aeroservoelastic model  
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Let us consider the nominal system described by  
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and the system with uncertainty (11) defined as 
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Thus, the speed ( )tUU =  is thought as a time dependent 
parameter uncertainty. The problem is now to synthesize 
a control law for the system (13), to face up to the 
uncertainties ( )tA∆ .  

In practice, the dynamic instability of the airspace 
structures described by systems (12), (13) is named 
flutter. 

Therefore, the framework of the control synthesis is 
flutter suppression, in other words, active control of 
flexible structures vibrations.  
 
 
4. CONTROL SYNTHESIS FOR LINEAR 

SYSTEMS WITH STRUCTURED STATE 
SPACE UNCERTAINTY 

 
Control synthesis for linear systems with time varying 
state space uncertainty will be considered. The approach 
represents a development of the results given in (Sobel 
et al., 1989; Yu and Sobel, 1991). These results can be 
obtained in a very simple manner: a) a similarity 
transformation involving the modal matrix of the 
nominal closed loop system is applied to the uncertain 
closed loop system; b) the Gronwall lemma is used for 
the solution of this system. Other standard results of the 
problem has been derived by using a Lyapunov 
approach (see references Corless and Leitmann, 1981; 
Barmish et al., 1983) where frequently used matching 
conditions were introduced), or a Popov approach (see, 
for example, Sparks and Bernstein, 1993). The results of 
Sobel and his coworkers are still especially well suited 
in a problem of vibration control, because involve 
eigenstructure assignment. 

Consider a nominal linear time invariant system 
described by 

xCyxCyBuAxx ppoo ==+= ,,&  
(14) 

where nx ℜ∈  is the state vector, mu ℜ∈  is the input 
(control) vector, r

oy ℜ∈  is the output measurement 
vector, l

py ℜ∈  is the performance vector, and A, B, Co, 
Cp are constant matrices. Suppose the nominal system is 
subject to linear time-varying parametric uncertainties in 
the entries of A, described as )(∆ tA . Thus a system with 
uncertainty is obtained     
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Further, suppose that bounds are available on the 
absolute value of the maximum variations in the 
elements of )(∆ tA  

( ) ( ) n,j,i,ata
maxijij 1∆ =≤ . (16) 

Define )(∆ tA+  as the matrix obtained by replacing 
the entries of )(∆ tA  by their absolute values. Also, 
define mA  as the matrix with entries ( )

maxija .  

Consider now the observer that produces the 
estimate of the state, x̂ , is of the form 
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 Thus, a separation property is assumed, that is the 
control is generated from linear combinations of an 
estimate x̂  to the true state x . The feedback gain K is 
given uniquely as a solution of a LQR problem 
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R,Q  must be symmetric and positive, rank mB = , and 
( ) ( )pC,ABA ,,  stabilizable and detectable, respectively 
(I. Ursu and F. Ursu, 2002); then 

( ) .BKARe 0<−λ  (19) 

 The observer gain L will be select so that ( )0LCA−  
is asymptotically stable. One may proceed as follows, by 
virtue of the duality property (Kwakernaak and Sivan, 
1972): a) rename ( )TT C,A 0  to ( )B,A ; b) use LQR 
design technique to determine the stabilizing gain K; 
c) rename TK  to L. 
 The closed-loop dynamics of the overall – extended 
–  feedback system (15), (17) are given by  
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 Consider also the nominal closed loop system  

.xAx ecle =&  (21)

Stability robustness problem. Given feedback gain 
matrices ,K rm×ℜ∈ mrL ×ℜ∈ such that all of the 
eigenvalues of the nominal system (21) exhibits 

desirable dynamic performance, determine if the system 
(20) is asymptotically stable for all )(∆ tA described by 
(16).  

Performance robustness problem. Feedback gain 
matrices ,K rm×ℜ∈ mrL ×ℜ∈  are chosen such that all of 
the eigenvalues of the system (21) are inside the region 
R. Determine if all of the eigenvalues of the system (20) 
are inside of the region R for all )(∆ tA  described by 
(16). 

Proposition 1. Suppose that K and L are such that 
the system (21) is asymptotically stable with distinct 
eigenvalues. Then, the system (20) is asymptotically 
stable for all )(∆ tA  described by (16) if 
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i
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and M is the modal matrix of clA . 
 The value of 2⋅  is usual given as Perron 

eigenvalue; in other words, the real non-negative 
eigenvalue 0≥λmax  of a non-negative matrix, such that 

0≥λmax  for all eigenvalues of this matrix. 
 

  
 
Proof. Proposition is proved after some processing 

of the proof in (Yu and Sobel, 1991). 
 Proposition 2. Suppose that K and L are such that 
the system (21) has only distinct eigenvalues, all of 
which lie inside the region R (see Fig. 2). Let D be a 
diagonal matrix with positive real entries, and let Q be a 
nonsingular matrix. Then the eigenvalues of system (20) 
will be in region R for all A∆  described by (16) if 
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Fig. 2. Performance robustness region 
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1
22

−= QQQk   (condition number) and iλ is an 

eigenvalue of clA . 
 Proof. Proposition is proved after some processing 
of the results given in (Yu and Sobel, 1991). 
  
 
5. NUMERICAL EXAMPLE AND CONCLUSIONS 
 
Worthy noting, given the controllable and observable 
system ( )0C,B,A  and the assumption that matrices B 
and 0C  are full rank, then max (m, r) closed loop 
eigenvalues can be assigned. 
 An experimental wing model for an aerodynamic 
tunnel will be used to illustrate the proposed active 
control design (Lind and Brenner, 1999). The system 
data were as follows: τ = 0.03 s; m = 12.387 kg; 
αx = 0.2466; b = 0.135 m; αJ =0.065 kgm2; 
β
zC = 3.358; hc = 27.43 kg/s; αc = 0.036 kgm2/s; 
α
zC = 6.28; a = –0.6; hk  =  2844.4 N/m; 

αk = 3.525 Nm/rad; β
mC = 12.387; α

mC = – 
0.635;ρ =1.225 kg/m3; sk = 10π/180/20 rad/mA; 
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 Open-loop root loci of the nominal system (12) are 
shown in Figure 3. The system is stable until a critical 

speed 11.423 m/s occurs. An active control low is now 
built, considering =nomU 11.423 m/s. The closed loop 
eigenvalues are shown in Figure 4; the chosen weghting 
matrices were [ ]111150010diag 7=Q  and R = 1. Very 
narrow bounds ( )5031139611 .,.U ∈  for stability 
robustness, predicted by condition (22), are not 
surprisingly. Indeed, it is well known that inequalities 
such as (22) are very conservative (Yedavalli, 1986). An 
improving of the bounds for robust stability can be 
obtained by using a direct calculus and is very 
spectaculous: ( )42160 .,U ∈   

Similar bounds for performance robustness provide 
the inequality (24), but again a direct calculus can be 
utilized.   

The main contribution of the paper is the 
development of a control law, employed to get the active 
control of even unstable in open loop speeds. 
Consequently, critical flutter speed can be maximized no 
mater how much by using a succession of gains of 
control law. 
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