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Abstract: The parametrically excited systems are systems with periodically varying
coefficients. In these systems the phenomenon of parametric resonance is to be met,
being characterized by a continuous spectrum composed of several small intervals
which tend each to a critical frequency when the amplitude of the parametric
excitation tends to 0. Also the amplitude of the oscillation around a critical frequency
grows exponentially (instead of polynomially – the case of standard resonance).
In the discrete time case the results do not migrate mutatis–mutandis from the
continuous time one; this paper shows that there are at least two ways of defining
critical frequencies in discrete–time parametric resonance.
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1. INTRODUCTION

In order to make clear the basic notions we shall
discuss only the simplest case, following the line
of the basic references (Krein, 1955; Yakubovich
and Staržinskii, 1987). Consider S0 a dynamical
system with constant parameters which has oscil-
latory bounded trajectories. A typical example is

ÿ + P0y = 0 (1)

where y is a m–dimensional vector of the general-
ized coordinates and P0 > 0 is a real positive def-
inite matrix. Therefore it has positive and simple
(or of simple type) eigenvalues; these eigenvalues
are ω2

j and ωj are called the eigenfrequencies of
system (1).

The motion of the system under ε–parametric
excitation – in the linearized formulation – is
usually described by

ÿ + P (ωt, ε)y = 0 (2)

where P : R × [0, ε0] → Rm×m is continuous,
symmetric and 2π–periodic with respect to the
first argument, uniformly with respect to the
second one. Also

lim
ε→0+

2π∫

0

|P (t, ε)− P0|dt = 0 (3)

Definition 1. We call ω a critical frequency for a
given ε-parametric excitation of (1) if there is no
εω > 0 such that the motion of (2) is totally stable
for 0 < ε < εω i.e.such that all solutions of (2) are
bounded on R for 0 < ε < εω.

Since a change of the time scale ωt Ã t leads to
the modified system

ÿ =
1
ω2

P (t, ε)y = 0 (4)

the parametgric resonance is obviously connected
with the theory of λ-zones of total stability
which has more than 100 years and goes back to
Žukovskii(1891/1893) and Liapunov(1899) – for



the scalar case. In the vector case we hold the
classical result of M.G.Krein (1955) on critical
frequencies

Theorem 2. Regardless of the character of the ε-
parametric excitation of (1) (i.e. regardless of the
choice of P (t, ε) with the above properties) its
critical frequencies can only be the numbers

ωj,k,` = (ωj + ωk)/` , 1 ≤ j, k ≤ m ;

` = 1, 2, . . . (5)

We have already mentioned the fact that para-
metric resonance and the theory of λ-zones are
in close connection. In fact there is a long line
that unites the pioneering papers of Žukovskii and
Liapunov, the paper of Krein (1955) and further
research summarized in the two monographs by
Yakubovich and Staržinskii (1972,1987). On the
other hand we may cite here also a long list
of papers on differential equations with periodic
coefficients due to various authors, list that may
be found in another reference monograph due to
Cesari (1963) where this research is integrated.

Generally speaking, the results valid for differen-
tial equations can migrate to the field of discrete
time systems. Starting from this point of view,
Professor Aristide Halanay (1924-1997) has elab-
orated in Summer 1997 a Research Programme
concerning the theory of λ-zones for discrete-time
Hamiltonian systems. The accomplishment of this
programme is advancing (Halanay and Răsvan,
1999; Răsvan,2000; Răsvan,2002; Răsvan,2003a;
Răsvan,2003b). The aim of the present paper is to
deal with the associated problem – the parametric
resonance for discrete time systems.

2. THE FIRST PROBLEM
STATEMENT. A MOST RECENT

RESULT ON CRITICAL FREQUENCIES

The first problem statement strongly relies on
the following result due to Halanay and Wexler
(1968), see also (Halanay and Răsvan, 2000)

Theorem 3. Consider the system

yk+1 − (A + εPk)yk + yk−1 = 0 (6)

with A = A∗, Pk = P ∗k = Pk+N and assume that
the eigenvalues of A are distinct and located inside
the disk of radius 2. Then all solutions of (6) are
bounded provided |ε| is small enough.

This is obviously a canonical system having a
symplectic matrix; it is obtained as a small per-
turbation of a canonical system with constant

coefficients; also A + εPk → A for ε → 0. Clearly
θ = 2π/N may be viewed as the frequency of the
parametric excitation.

We may now consider the discrete time analogue
of (1), namely the system

yk+1 − 2yk + yk−1 + P0yk = 0 (7)

under the following basic assumptions : a) the
matrix P0 is symmetric and positive definite; b)
0 < ωj < 2, j = 1, . . . , m where ω2

j are the
eigenvalues of P0. Since P0 > 0 these eigenvalues
are simple or of simple type (with Jordan cells of
dimension 1). The characteristic numbers of (7)
are in complex conjugate pairs and belong to the
unit circle i.e. have moduli equal to 1:

λj
1,2 =

1
2
(2− ω2

j ± ωj

√
4− ω2

j )

= cos θj ±  sin θj = exp(±θj) (8)

It follows that (7) is totally stable. Its
ε-parametrically excited associate is

yk+1 − 2yk + yk−1 + Pk(ε)yk = 0 (9)

with Pk(ε) being symmetric, N -periodic and such
that

lim
ε→0

N−1∑
0

|P0 − Pk(ε)| = 0 (10)

the number θ = 2π/N being the frequency of the
parametric excitation. We may state

Theorem 4. If system (7) with eigenfrequencies
θ1, . . . , θm defined by (8) is considered subject to a
ε–parametric excitation leading to (9), its critical
frequencies can only be the numbers θj,`,q = (θj +
θ`)/q , 0 ≤ j, ` ≤ m , q = 1, 2, . . .

The theorem has been stated in (Răsvan, 2003)
and the proof is to be found there, being an
adaptation of the proof due to Krein (1955). It
strongly relies on the properties of the monodromy
matrices for periodic discrete time Hamiltonian
systems (Halanay and Răsvan, 1999) and we shall
not insist on technical details.

3. A SECOND STATEMENT OF THE
PROBLEM

In order to motivate the second statement, we
turn back to the basic references (Krein, 1955;
Yakubovich and Staržinskii, 1987) and more pre-
cisely to the description given in Section 3 of the
paper, formulae (1)–(4). In this case the paramet-
ric excitation is given by P (ωt, ε) where ω > 0



is the frequency of the parametric excitation that
could be some arbitrary real number. At the same
time P (·, ε) is assumed 2π–periodic i.e. it has some
standard period.

On the other hand, a main source for discrete
time systems is discretization of continuous time
ones; but the discrete sequence resulting from
discretizing a periodic function is, generally speak-
ing, almost periodic unless the discretizing step is
an entire or rational submultiple of the period. Or,
in this case, it seems reasonable to consider this
special discretization as connected to the standard
period. Consequently we have to consider first the
passage from (2) to (4) and then discretize (4)
with the step 2π/N . This will give the discrete
parametrically excited system

yk+1 − 2yk + yk−1 + ω−2Pk(ε)yk = 0 (11)

with Pk(ε) being symmetric, N–periodic and sat-
isfying

lim
ε→0+

N−1∑
0

|Pk(ε)− P0| = 0 (12)

which is more alike (3). This point of view requires
a re-formulation of Theorem 4. In order to state
this reformulation we remark first that

N−1∑
0

|ω−2Pk(ε)− ω−2P0| = ω−2
N−1∑

0

|Pk(ε)− P0|

and (12) holds for the pair ω−2P0, ω
−2Pk(ε). One

has to examine the “intermediate” system

yk+1 − 2yk + yk−1 + ω−2P0yk = 0 (13)

Its eigenfrequencies are defined starting from the
total stability condition for (13) which reads now

0 < ωj/ω < 2 , j = 1, 2, . . . , m

This gives a limitation over the number ω which
stays for the excitation frequency that is ω >
(1/2)maxj{ωj}. If ω does not respect this inequal-
ity, the comparison principle used in determining
the critical frequencies is no longer applicable.
Indeed, the mathematical construction in the line
of Krein (1955) goes as follows. Assuming that
ω is such that (13) is totally stable, we may
define the eigenfrequencies of (13) as the numbers
θω

` ∈ (0, π) determined from the equalities

2 sin
θω

`

2
=

ω`

ω
, ` = 1, . . . ,m

(Remark that the restriction on ω makes possible
to define θω

` as above). The characteristic numbers
of (13) are exp(±θω

` ) and are located on the unit
circle. The transition matrix of (13), denoted as
Uω,0

k , k = 0, 1, 2, . . . is of stable type i.e.it has the

eigenvalues exp(±kθω
` ) , ` = 1, . . . , m, located on

the unit circle and simple or of simple type. Also
its eigenvectors are of definite type in the sense of
Krein. More precisely

(Jξ(`)
ω , ξ(`)

ω ) =−2 sin θω
` 6= 0 ,

` =±1, . . . ,±m (14)

with ξ
(`)
ω – the eigenvector associated to θω

` and

J =
(

0
−Im

Im

0

)

The situation that has to be avoided is that an
eigenvalue of the type exp(θω

` ) would equal an
eigenvalue of the type exp(−θω

` ) ; this would im-
ply that the eigenspace of this eigenvalue contains
two vectors of different types in the sense of (13).
Therefore

(θi + θ`)k 6= 0 (mod 2π)

We turn now to system (11) which is canonical like
13) but it is N–periodic. Its stability properties
are determined by its multipliers – the eigenvalues
of the monodromy matrix Uω,ε

N of system (11).
Let us view (13) as N–periodic : its monodromy
matrix would be Uω,0

N = Uω,0
k |k=N . From (12) we

deduce, following the results of Krein (1955) or
(Halanay and Wexler, 1968) that

lim
ε→0+

Uω,ε
N = Uω,0

N

uniformly with respect to ω and for each N ≥ 1.
Moreover, if Uω,0

N is of stable type (with eigenval-
ues located on the unit circle, with definite eigen-
subspaces), the neighboring matrices are such
hence Uω,ε

N are of stable type for ε small enough
(0 < ε < εω).

Critical frequency means instability for any small
ε > 0 i.e. non-existence of εω as above. But this
may happen only if Uω,0

N is not of stable type. It
follows that there should exist some i and ` such
that

(θω
i + θω

` )N = 2qπ

that is

θω
i + θω

` =
2qπ

N
We may use now the definition of θω

i in order to
obtain, after simple trigonometric manipulation,
the following result

Theorem 5. Consider system (7) with the eigen-
frequencies θ1, . . . , θm defined by (8) i.e. starting
from the eigenvalues ω2

1 , . . . , ω2
m of P0 and assume



this system to be subject to a ε–parametric exci-
tation leading to (11) with ω > (1/2)max`{ω`}.
then its critical frequencies can only be the num-
bers

ωi,`,q =
1
2

∣∣∣∣
ωi + (WN )q/2ω`

=(WN )q/2

∣∣∣∣ , 1 ≤ i, ` ≤ m ;

q = 0, 1, . . . , 2(N − 1) (15)

where WN has the significance given in Digital
Signal Processing i.e. WN = exp(−2π/N).

An interesting remark is that within this view of
parametric resonance the number of the critical
frequencies is finite.

4. CONCLUSIONS

In this paper there are presented two models of
the parametric resonance in discrete time systems.
In both cases there was considered the paramet-
ric excitation of the canonical system described
by the Euler–like discretization of the matrix
Hill equation and in both cases there were given
explicit formulae for the critical frequencies. A
special mention for the condition on the exci-
tation frequency in the second model i.e. ω >
(1/2)max`{ω`}. Denoting λ = ω−1 the inequality
becomes

λ2 < 4(max
`
{ω`})−2 = 4|P0|−1 =

=
4
N

(
N−1∑

0

|P0|
)−1

(16)

which is exactly the Liapunov–like estimate for
the central stability zone in the corresponding case
(Răsvan, 2002) provided the matrix norm is taken
the largest singular eigenvalue of P0.

Finally let us remark that the validation of the
right model among the two (or of the both ones)
will take place by further research on parametric
resonance along the lines of the (by now) classical
reference (Yakubovich and Staržinskii, 1987).
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Răsvan, Vl. (2003a) On the central λ–stability
zone for linear discrete time Hamiltonian sys-
tems, in Dynamical Systems and Differential
Equations. Discrete and Continuous Dynamical
Systems : ISSN 1078-0947, Supplement Volume
(Proc. Int’l Conf. May 24-27, 2002, Wilmington
NC, USA).
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