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Abstract: The stabilization by feedback control of
systems with input delays may be considered in various
frameworks. An approach to stabilize a such system,
based on the Artstein transform, is the so-called finite
spectrum assignment. In this case the control law that
stabilize the system is a distributed delay control law. A
difficulty in applying a control law of this form consists
in the practical implementation of the integral term,
which needs to be calculated on-line. Some recent papers
outlined an instability mechanism when the distributed
delay in the control law is approximated with a sum of
point-wise delays, despite the asymptotic stability of the
ideal closed-loop system. In this paper, we use a suitable
discretization rule based on piecewise constant control
signals. Then, we analyze and illustrate by some
numerical examples the robustness/fragility of this
control law.

Key words: time delay systems, stabilization, piecewise
constant control, robustness.

1. INTRODUCTION

Systems with input delay are of interest to control
theorists and practitioners for various reasons. They
originate from the simplest model of process control,
which assigns to the controlled plant a transfer function
of the form hsesH −)(  where H(s) is strictly proper
rational function. To this transfer function, one may
associate one of the following state representations:
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where in both cases )()( 1 sHbAsIc ≡− −∗ . These
representations have in common the obvious fact that the

state space is finite dimensional but the input operator in
the first case or the output one in the second case are
defined on infinite dimensional extensions and are
unbounded. Control problems have been formulated and
solved for such systems since the classical (transfer
function based) period (the ‘50ies) and the mostly known
result is that based on Smith predictor. The systems thus
designed could be either non-robust or unstable (some
times). For this reason the more recent techniques based
on state space ensuring feedback stabilization and
optimality of some quadratic criterion were applied to
(1). One can mention here some results on feedback
stabilization (Olbrot, 1978; Manitius and Olbrot, 1979;
Watanabe and Ito, 1981). The guiding line of these
papers is the construction by ad-hoc methods of dynamic
compensators that are stabilizing.

Another line of research was that dealing with
linear quadratic optimization. Among many
contributions, we may cite (Mee, 1973), which is
“mathematically oriented” and (Ichikawa, 1982) which
is more “applied” and in any case simpler.

These papers were followed by those of Pandolfi
(Pandolfi, 1981, 1989, 1990, 1991) containing a strong
criticism of the first ones; this criticism was motivated
by the fact that the results had been obtained by ad-hoc
methods and not in a standard way, by deduction from
an abstract theory. The main idea of Pandolfi was to re-
introduce in the model the propagation effects. Since
pure delay occurs from lossless telegraph equations with
matched boundary conditions, this model is re-
introduced and the system with input delay becomes a
boundary condition for the partial differential equations
that replace the delay.

Within this framework, the basic linear feedback
problems are embedded in the approach based on
singular control. Moreover the approach of Pandolfi
shows the rational way of including systems with input
delay in the broad class of systems described by abstract
evolution equations (Weiss and Curtain, 1997). This line
is continued by the papers of Tadmor (Tadmor, 1995,
1998) where the abstract model leads finally to finite
dimensional – like solutions.

The aim of this paper is a more applied one, closed
to the idea of sub-optimality. The pioneering paper
(Halanay and Răsvan, 1977) showed the suboptimality



of the piecewise constant controls at the level of the
performance in the standard linear quadratic optimal
stabilization problem; further, this approach was
developed in (Drăgan and Halanay, 1999). We are also
guided by a paper mentioned sometimes in the
bibliography of time delay systems (Artstein, 1982); in
this paper, Artstein introduces a linear transformation in
order to reduce the system to a delay-free one. This idea
is closed to that of Tadmor (it precedes him) and closer
to elementary approaches that we intend to follow
throughout the paper.

We start with an elementary form of the stabilizing
feedback (Olbrot, 1978; Manitius and Olbrot, 1979;
Watanabe and Ito, 1981) and discuss the dynamics of the
closed loop system. Then, we approach the practical
implementation of the resulting distributed delay control
law. The feedback control by piecewise constant signals
is considered from the point of view of stability
preserving and the robustness with respect to parameter
uncertainties is analyzed.

2. STABILIZING FEEDBACK

We shall consider here the following system with
input delay (Kwon and Pearson, 1980):

    )()()()( 10 htuBtuBtAxtx −++=&         (3)

Obviously, its solution is defined for 0>t  if there
are given the initial conditions ))(,( 00 ⋅ux  and the
control u(t) for 0>t ; here )(0 θu  is some initial
function defined for )0,[ h−∈θ . The Artstein transform
(Artstein, 1982) in this case is given by
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and the result of Artstein takes the form of the following
equivalence.

Proposition 1. Let )0);(),(( >ttutx  be a solution
(admissible pair) for (3), defined by some initial
condition ))(,( 00 ⋅ux . Then )0);(),(( >ttutz  with z(t)
defined by (4) is a solution (admissible pair) for the
system

    )()()()( 10 tuBeBtAztz Ah−++=&        (5)

with the initial condition )0(0 zz = . Conversely, let
)0);(),(( >ttutz  be a solution of (5) defined by some

initial condition 0z . Then, given some )(0 ⋅u  defined on
(-h, 0) and taking
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the solution of (3) defined by these initial conditions and
by u(t), 0>t  is given by
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The proof of this result is straightforward.
Furthermore, we shall use the following result

(Kwon and Pearson, 1980) that may be found implicitly
in (Ichikawa, 1982; Olbrot, 1978; Manitius and Olbrot,
1979; Watanabe and Ito, 1981; Mee, 1973; Răsvan and
Popescu, 2001).

Proposition 2. Let Fzu =  be a feedback stabilizing
scheme for (5). Then the control
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is stabilizing for (3).
The proof is straightforward and relies entirely on

Proposition 1.
The structure defined by (8) may be used as a

stabilizing compensator since the solution of the closed
loop system
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may be constructed by steps (Răsvan and Popescu,
2001), hence this system is well defined. Moreover, we
may differentiate the second equation of (9) in order to
obtain a usual time delay system:
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The solution of this system may be constructed
following the line of Halanay (Halanay, 1966) applying
a contraction principle on ));0,((2 mmn hL ℜ−×ℜ×ℜ .

It is interesting to check the characteristic equation
of (9) and (10). Considering the Euler type solutions

petx st=)( , qetu st=)(  with Cs∈ , )dim()dim( xp = ,
=)dim(q  )dim(u , we obtain:
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If we take into account (4) viewed along Euler
solutions, the above equalities become
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From here, we deduce the characteristic
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hence the spectrum is finite and may be assigned from
the stabilization problem for (5). In a similar way the
characteristic equation for (10) is obtained as

   0))(det( 10 =+−− − FBeBAsIs Ahm          (12)

where )dim(um =  and the factor ms  is a consequence
of differentiation showing that the system evolves along
an invariant manifold.

3. IMPLEMENTATION OF DISTRIBUTED
DELAY CONTROL LAWS

The continuous time (optimal) stabilization gives to
the control engineer the structure and the main
parameters of the control device, which can be
determined by off-line computation.

A difficulty in applying a control law of the form
(8) consists of the practical implementation of the
integral term, which needs to be calculated on-line. As
explained in (Manitius and Olbrot, 1979), obtaining this
term as the solution to a differential equation must be
discarded because it involves unstable pole-zero
cancellations when A is unstable. A possibility is to
approximate the distributed delay by a sum of point-wise
delays by using a numerical quadrature rule (Michiels,
Mondie and Roose, 2003):
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In the past few years the effects of such a semi-
discretization on the stability of the closed-loop system
has been examined thoroughly. It was demonstrated with
a scalar example that for some parameters values the
control law (13) may not stabilize the system (3), for
arbitrarily large values of q. Furthermore, the stability of
the closed-loop system may be destroyed by
infinitesimal relative perturbations on the delay
parameters qj,θ  in (13), due to the neutral nature of the
problem.

Now, we consider the system (3) and apply the
piecewise constant control

       L,2,1,0,)1(,)( =δ+<≤δ= kktkutu k       (14)

where Nh /=δ . As in Halanay and Rásvan (1977) and
Drágan and Halanay (1999) we associate the discrete
time system
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Let ))(,( 00 ⋅ux  be the initial condition associated
with (3). Since the discretized system is satisfied by

)( δ= kxxk , )(⋅x  being the solution of (3) with
piecewise  constant  control,  it  is  only  natural  to
choose the discretized initial condition
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which is the discrete analogue of Artstein transform and
find the associate system

       k
N
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It is worth mentioning that (17) might be obtained by
writing (4) at δ= kt  and computing the integral for
piecewise constant control signals.

Let F be a stabilizing feedback for (18), i.e. is such
that FN ))()()(()( δδ+δ+δ −

10 BABA  has its
eigenvalues inside the unit disk. We deduce that the
compensator
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is stabilizing for (15). On the other hand, if we consider
the closed loop system
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one may see that this is a feedback system with an
augmented dynamics:
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)(00 δ−= Nuv . Obviously (21) is exponentially stable.
This follows from the fact that Fzu =  is exponentially
stabilizing system (18) and making use of (17). The
result may be obtained also spectrally, as in (Rásvan and
Popescu, 2001a).

To end the analysis we have to show how
stabilization of the associated discrete time system
ensures stabilization for the initial continuous time
system. This problem will be tackled on the transformed
system (5) with the stabilizing feedback

          δ+<≤δ=δ= )1(,)()( ktkFzkFztu k             (22)

The system is of the type considered in Halanay and
Rásvan (1977); a straightforward application of the
results from the above paper will ensure the exponential
stability of the closed loop hybrid system. Further, if z(t)
satisfies an exponential estimate then using (4) the
exponential estimate for x(t) is obtained what ends the
proof of the following result.

Proposition 3. Consider the system (3) under the
assumption that ),( 10 BeBA Ah−+  is a stabilizable pair.

Then ))()()(),(( δδ+δδ −
10 BABA N  is stabilizable and

a stabilizing feedback for this couple is stabilizing for (3)
provided 0>δ  is small enough. Here

)(),(),( δδδ 10 BBA  are defined by (16) and Nh /=δ .
Moreover, a stabilizing feedback for (5) is stabilizing
also if the implementation is performed using samples
i.e. state values measured at L,2,1,0, =δ kk  .

4. SIMULATION RESULTS

4.1. Example 1

Let consider a system with input delay described by
the following differential equation
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The standard state-space form can be obtained as follows
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By using the Artstein transform we obtain the system
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The (A, B) pair is controllable for all values of the
system parameters ( 0ω  and h) except those for which
the following equality is satisfied

      π+=ω )12(0 kh              (27)

So, the (A, B) pair is generic controllable.
Let F be such that BFA+  has it eigenvalues with

strictly negative real parts. Then, the following
piecewise constant control is applied to the system (24)
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                            for  δ+<≤δ )1(ktk ,
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For simulation purposes we choose
2/0 π=ω (rad/s) and 1=h (s). Imposing the pole

allocation for the system (26) in { }2,1 −−  we obtain
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Choosing the initial condition associated with (24)
as [ ]( ))0,0)(;210 <τ≤−=τ= hux T  and 10=N  the
state evolution (for the closed loop system) and the
control input are presented in Fig.1 and, respectively,
Fig.2.

Fig.1. State Evolution (N =10, h =1)

Fig.2. Input Control (N =10, h =1)

To analyse the robustness of designed controller
with respect to the time delay of the plant, we have
represented the state evolution for various values of h
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(Fig.3 – Fig.6). Also, we repeated the above simulation
for a different value of δ  (Fig. 7). From the simulation
results we can conclude that the proposed controller is
robust both with respect h and δ .

Fig.3. State Evolution (N =10, h =1.3)

Fig.4. State Evolution (N =10, h =1.7)

Fig.5. State Evolution (N =10, h =0.7)

Fig.6. State Evolution (N =10, h =0.05)

Fig.7. State Evolution (N =10, h =1, 11.0=δ )

4.1. Example 2 (unstable system)

Consider the system

   )1( −+= tuxx&              (29)

The corresponding coefficients for the form (24) are

                     1,1,0,1 10 ==== hBBA              (30)

and then we obtain (see (26))

            1
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Obvious, the (A, B) pair is controllable. Imposing the
pole allocation for the system (26) in { }1−  we obtain

        eF 2−=              (32)

In the piecewise constant control law (28) the following
values of coefficients are obtained:

 δ=δ e)(A ,  1)( −=δ δe1B ,  
N
h

=δ .

Choosing the initial condition associated with (29)
as ( ))0,0)(;10 <τ≤−=τ= hux  and 10=N  the state
evolution and the control input are presented in Fig.8 and
Fig.9. Then, we repeated the simulations for different
values of h and δ (see Fig. 10 – Fig. 13).

Fig.8. State Evolution (N =10, h =1)

Fig.9. Input Control (N =10, h =1)

Fig.10. State Evolution (N =10, h =1.1)
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Fig.11. State Evolution (N =10, h =0.9)

Fig.12. State Evolution (N =10, h =1, 09.0=δ )

Fig.13. State Evolution (N =10, h =1, 11.0=δ )

5. CONCLUSIONS

The stabilization of the systems with delayed
control signal may be analyzed either in a general
abstract framework or starting from the implementation
of simple ideas based on Smith predictor. In this paper,
we combined the second approach with the piecewise
constant implementation. Such implementation
associates not only a discrete-time system but also a
finite dimensional one. Based on Artstein transform we
have deduced a feedback stabilizing law. Then, we
analyzed the robustness of the closed-loop system
stability when the piece-wise constant control it is used.
Further researches must be made in this direction.
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