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Abstract: In this paper Schwartz distributions, their 
properties and digital control applications are 
considered. Using the definition of distribution, the 
mathematical formulas for discrete elements are 
presented in order to determine the mathematical 
equations of digital control systems. This approach 
allows describing the hybrid systems containing analog 
and digital elements with the common equations on 
distributions. The equations of distributions are very 
simple comparing to the equations on normal functions. 
Based on distribution equations there can be designed 
more simple, flexible and reliable systems. The paper 
describe the specific properties that can be used in digital 
control and design the models. Based on this theory the 
complex PWM-control of power electronics inverter 
application is presented. The results are similar to 
classical PWM inverter produced by electronic 
components, but more simple.  
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1. INTRODUCTION 
 
A lot of phenomena cannot be represented as a function 
or as a mathematical formula because of its 
discontinuities, severe non-linearity, non-derivation etc. 

In the real function theory this regions are avoided with 
the partitioning method, eliminating the discontinuities 
and never using the derivation operator in critical points. 
 

This approach has two disadvantages: first, the 
representation is complicated and unusual and second, 
just the discontinuities are eliminated where the system 
works (digital systems, commutations relay, logical 
transducers and hybrid elements). 
 

It is possible to extend the function theory using the 
Schwartz distributions, which generalizes the 
mathematical operators and can be applied on the whole 
domain. On the other hand by this method is possible to 
define new distributions not existing in the real function 
class, but very usual in the phenomena analyzing. 
 

Now, consider the most usual “function” sign(x) which 
returns the sign of the argument (fig.1). 
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Fig.1. a) Sign distribution; b) Sign derivation; c) Sign invert 

 
If sign(x) is treated as a function, its derivate 

( )[ ] 0xsign '= , but this is not true because of the origin 
discontinuity which produce a short pulse. It is possible 
to define: ( ) ( )xsignxsign −=−  as an odd function. 
 
Switching a switch is a very known phenomenon, 
represented as a “function” ( )xθ  (fig.2).  
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Fig.2. a) Heaviside distribution; b) Heaviside derivation; c) Heaviside invert 

 
As above, if ( )xθ  is a function then ( )[ ] 0x '=θ  and if it is 
a distribution then ( )[ ] ( )xx ' δ±=±θ . The relations 
between these distributions are: 
 

( ) ( ) 1xx =−θ+θ ;    ( ) ( ) ( ) 1x2xx)x(sign −θ⋅=−θ−θ=  
Based on this simple distribution is possible to define 
new distributions. For example the memory as a window 
behavior or the rectifier of AC voltage can be 
represented very simple as a distribution.  
 

In case of the hystheresis distribution ( )xh  (fig.3.a) the 
classical definition is complicated as presented below: 
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Fig.3. a) Hystheresis distribution; b) Hystheresis derivation 

 
As distribution ( )xh  can be written: 
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Based on relations: 
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If is calculated ( )[ ] 'xh  results (fig.3.b): 
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In the case of the rectifier function ( )xd  applied for 
( )xsin  (fig.4) can be observed that the positive wave is 
( ) ( )[ ] ( )xsinxsinxsin ⋅θ=+  and the negative wave is 
( ) ( )[ ] ( )xsinxsinxsin ⋅−θ=− . 

 

If we combine these two distributions results: 
( ) ( ) ( )xsinxsinxsin −+ +=  

( ) ( ) ( ) ( )[ ] ( )xsinxsinsignxsinxsinxd ⋅=−= −+  
 
2. DISTRIBUTIONS AND THEIR PROPERTIES 
FOR DIGITAL CONTROL APPLICATIONS 
 
We consider the n-dimensional Euclidian real space Rn, 
organized as a vectorial space. The elements of this 
space are n-coordinates vectors: ( )n21 x,...,x,xx = , 

( )n21 y,...,y,yy =  and scalar product and vector norm is 
defined as follows: 
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On this space will be considered the functions: 

( ) RR:xF n → . From this functions will be selected 
( )xϕ  which are of n order, continuous, derivable and 

also the derivates are continuous and have zero value out 
of their domain. The domain of these functions is closed 
and compact. 
 

The space of ( )xϕ  functions continuous and derivable of 
n order is Kn and has the properties: 
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It is possible to define the functional applications 
between Km and Rn as follows: 

( )[ ] cxf:RK:f nm =ϕ→ . 
 

Definition: Distributions are real applications as a result 
of linear and continuous functions on the Km space. 
 

The most important distributions in digital systems are: 
pulse, step and ramp distributions. 
 

The pulse distribution or Dirac pulse is defined as: 
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This distribution represents an origin concentrated 
infinite pulse, which has a weigh equal to 1 (fig.4.a). 

 

 
Fig.4. Dirac distribution and properties 

 
The most important properties of Dirac distribution are: 

1. ( ) ( )00 xxx ϕ=−δ  
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Fig.5. Heaviside distribution and properties 

 



The step distribution or Heaviside distribution is defined 
as follows: 
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This distribution (fig.5.a) is a limit of ( ) xn
n e1x ⋅−−=ϕ  

(fig.5.b). The important properties of ( )xθ  are: 
1. ( ) ( )x1x θ−=−θ  
2. ( ) ( ) ( )xsignxx =−θ−θ  
3. ( ) ( ) 1xx =−θ+θ  
4. ( ) xxsignx =⋅  

5. ( ) ( ) ( )axax1ax 22 −θ++θ−=−θ  

( ) ( ) ( )axaxxa 22 −θ−+θ=−θ  
6. ( ) ( ) ( )xfxfx +=⋅θ  
7. ( )[ ] ( )00 xx1xx −=−ϕθ  

 

The ramp distribution is defined as follows: 
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The ramp is a combination between function ( ) xxf =  
and step distribution: ( ) ( ) +=θ⋅= xxxxr  
 

The ramp distribution and its properties are in fig.6. 

 

 
Fig.6. Ramp distribution and properties 

 
The most important properties of ramp distribution are: 

1. ( ) −=−θ⋅− xxx  (negative ramp) 
2. xxx =− −+  
3. ( ) −+ +=⋅= xxxsignxx  (modulus) 

4. ( ) +=+⋅ xxx
2
1  

5. ( ) ( ) ( ) ( ) ( )axaxaxaxaxr 22 +⋅+θ+−⋅−θ=−  
6. [ ] ( )xx ' θ=+  
7. [ ] ( )xx ' −θ−=−  

3. SIMULATION AND SOFTWARE 
IMPLEMENTATION 
 
First the model of ( ) ( ) ( ) ( ) tandtsign,tr,t,t θδ  were 
designed and simulated.  
 

Based on these models in fig.7 was designed the model 
for the following distributions: 

( )[ ] ( )[ ] [ ] [ ] ( )[ ]tsinsign,4x,4x,tcos,tsin 22 ⋅ω−θ−δ⋅ωδ⋅ωδ  and 
then simulated. 

 

 
Fig.7. Simulation of ( )[ ] ( )[ ] [ ] [ ] ( )[ ]tsinsign,4x,4x,tcos,tsin 22 ⋅ω−θ−δ⋅ωδ⋅ωδ  

 



The software was written in assembly language for 
elementary distributions: ( ) ( ) ( )trandt,t θδ . 

In fig.8 is presented the subroutine for ( )tθ  and the 
results on the screen after running. 

 

 
Fig.8. Software for elementary distributions 

 
4. EXPERIMENTAL RESULTS FOR POWER 
INVERTER CONTROLLER 
 
The power inverter controller must produce six 
appropriate PWM pulses that are 120 degrees unphased. 
This is a complicated process because there must be 
solved by approximations the following nonlinear 
transcendental equations to determine the pulses (fig.9). 
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where: i is the phase number, p is the frequency index, R 
is the modulation index and k is the pulse number. 

 

 
Fig.9. PWM pulses 

 
Using the distributions theory this problem can be solved 
very simple and precisely. 
 

First the rectangular distribution will be generated by 
formula: ( )[ ] ( )∑

⋅

=

π⋅−δ=⋅ωθ
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kttsin .  

 

After this, using the integration, applying ( )tδ  the pulses 
will be obtained (fig.10). 

 



 
Fig.10. Simulation results 

 
The software was written in assembly language. There 
are different routines. One is to model the nonlinear 
transcendental equations at sample time and others to 
apply ramp, step and Dirac distributions to sine-delta 
function. The step distribution outputs the pulses for one 

switch and the other five pulses are determined by 
unphasing it with 120o and 240o. 
 

This software was tested and compared with the pulses 
produced by an electronic PWM inverter based on the 
IPM module FUJI 120RA100 (fig.11). 

 

 
Fig.11. a) PWM software; b) Experimental results 

 
5. CONCLUSIONS 
 

1. The distributions are very useful for discreet 
signals like those in digital control. 

2. Using the properties of distributions many 
complex problems of digital control can be 
solved easy and precisely. 

3. The distributions are suitable for software 
implementation and by this offer very good 
support for software oriented solution of digital 
control applications. 

4. The experimental model is simple and the 
results are very closed and accurate comparing 
with the classical ones. 
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