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Abstract: This paper proposes a direct adaptive control 
strategy for a class of nonlinear systems for which the 
dynamics is incompletely known and time varying. The 
nonlinear controller design is based on the input-output 
linearizing technique. The only information required 
about the process is the measurements of the state 
variables and its relative degree. Unknown controller 
functions are approximated using neural networks. The 
form of the controller and the adaptation laws for the 
neural controller are derived from a Lyapunov analysis 
of stability. Under certain conditions the state vector 
remains bounded and the plant output tracks with user 
specified dynamics the output of a linear reference 
model. The technique is applied to a nonlinear and time 
varying biotechnological process model. Computer 
simulations are included to demonstrate the 
performances of this controller by comparison to an 
exactly linearizing non-adaptive controller. 
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1. INTRODUCTION 

It is well known that traditional control design 
involves complex mathematical analysis and has many 
difficulties especially in controlling highly nonlinear and 
time-varying plants as well. To overcome these 
difficulties many researchers (Chen and Liu 1994), 
(Mayosky and Cancelo 1999), (McLain et al. 1999), 
(Spooner and Passino 1999), (Petre 2000, 2002) have 
suggested neural networks as powerful building blocks 
for nonlinear control strategies. The basic idea behind 
the neural network (NN) based control is to use a neural 
network estimator to identify the unknown nonlinear 
dynamics and compensate for it.  

The main advantage of using neural networks in 
control applications is based both on their ability to 
uniformly approximate arbitrary input-output mappings 
and on their learning capabilities that help the controller 
design to be rather flexible, especially when plant 
dynamics are highly nonlinear and time-varying. Also, 
the neural network based approach can deal with the 
control of nonlinear systems that may not be linearly 
parameterizable, as required in many adaptive 
approaches (Hovakimyan et al. 2002). 

In this paper a neural direct adaptive strategy for the 
affine class of nonlinear systems having unknown or 
uncertain dynamics is presented. The control signals are 
generated based on approximate feedback linearization 
technique (Isidori 1995) using the neural network 
approximation of the functions representing the 
unknown dynamics. Adaptation in this direct adaptive 
controller requires the on-line adjustment of the 
parameters of neural networks. The structure of the 
controller and the adaptation laws are derived in a 
manner similar to the classical Lyapunov based model 
reference adaptive control design, where the stability of 
the system in the presence of the adaptation is ensured. 
So, under certain conditions, the state vector remains 
bounded and the plant output tracks with user specified 
dynamics the output of a linear reference model. The 
technique is applied to a nonlinear and time varying 
biotechnological process model.  

Computer simulations are included to demonstrate 
the performances of this controller by comparison to an 
exactly linearizing controller. 
 
 
2. PROPOSED CONTROL STRATEGY 

2.1. Class of nonlinear systems 

Consider the class of single-input, single-output 
(SISO) affine nonlinear systems given by 

              uxgxftx )()()( +=&  
                  (1) 
              )()( xhty =     

where nx ℜ∈  is the state vector, ℜ∈u  and ℜ∈y  are 
the input and the output, respectively. Assume that the 
unknown nonlinear functions ngf ℜ∈⋅⋅ )(),(  and ℜ∈h  
are smooth. If the relative degree of the system (1) is 

n≤δ , then differentiating y  with respect to time δ  
times, the system output dynamics may be rewritten as: 

  )()()()()()( 1)( tuxxtuxhLLxhLy fgf β+α=+= −δδδ   (2) 

where )()( xhLx f
δ=α  and )()( 1 xhLLx fg

−δ=β  are Lie 
derivatives of the system dynamics. Also, assume that 
the control gain )(xβ  in (2) is bounded away from zero 
i.e. 0)( 0 >β>β x .  



  

It is well known that for the system (1a), (1b) there is 
a state diffeomorphism )(xz Φ=  defined as 
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where hL i
f
)( , 1,,1,0 −δ= Ki  are the Lie derivatives that 

transform the process (1) into a normal form in the new 
coordinate )(][ 21 xzzz TTT Φ==  (Isidori 1995), (Petre 
2000): 

     1,11 += kk zz& , 1,,2,1 −δ= Kk   
      )()()(1 tuxxz β+α=δ&   
     (4) 
      ),( 212 zzz Ψ=&  
      11zy =  

where δ
δ ℜ∈= Tzzz ][ 1111 K  contains the process 

output and its )1( −δ  derivatives, T
nzzz ][ ,2212 δ−= K  

δ−ℜ∈ n  are the states associated with the internal 
dynamics, the elements of the continuous vector function 

),( 21 zzΨ  are =ψ ),( 21 zzi  ),( 21 zzL if +δφ , δ−= ni ,,1K  
and ),( 21

1 zzx −Φ= .  If 0=x  is the equilibrium point 
of the undriven system and 0)( =xh , the zero dynamics 
of the system are defined to be 

      ),0( 22 zz Ψ=&    (5) 

It was demonstrated (Sastry and Bodson 1989) that if 
the function )(xf  and )(xg  in (1) are known, the zero-
dynamics ),0( 2zΨ  are globally exponentially stable and 

),( 21 zzΨ  are Lipschitz in 21, zz . Consequently, under 
the process (1) the following assumptions can be made. 

Assumption 1. The process can be defined by (1) and 
transformed to (2) with input gain bounded by 

10 )(0 β≤β≤β< x . Much more, the input gain rate of 
change is bounded by Bx ≤β |)(| &  where ℜ∈B  is a 
finite constant. The zero dynamics of the system (1) is 
exponentially stable. 
 
2.2. Problem statement 

Our main objective is to design an adaptive control 
system which will cause the plant output y  to 
asymptotically track a desired output trajectory dy  in 
the presence of unknown disturbances, using only local 
measurements. Usually, the desired output trajectory 
may be defined as the output of a stable linear reference 
model, with relative degree greater than or equal to δ  
which characterizes the desired performances. This 
requirement is summarized in the following assumption. 

Assumption 2. The desired output trajectory and its 
1−δ  derivatives )1(,,, −δ

ddd yyy K&  are measurable and 
bounded. 

2.3. Direct adaptive control  

Assuming that the state x  is accessible, firstly, in an 
ideal case, we may define an input-output linearizing 
control law, which compensates for the dynamics of the 
system, as  

       )(),(
)(

)()(),(* xuvxu
x

tvxvxu ku +=
β

+α−
=       (6) 

where the signal v  is considered as a new input that will 
be defined below, ),( vxuu  is the unknown portion of the 
control law that is smooth in its arguments, and )(xuk  is 
a known part of the control law, which is assumed to be 
well-defined apriori (Spooner and Passino 1999). 

The direct adaptive control law is defined using a 
radial basis neural network (RBNN) with adjustable 
parameters to approximate ),( vxuu .  

A RBNN is made up of a collection of 0>p  parallel 
processing units called nodes. The output of the i th 
node is defined by a Gaussian function 

( )22 /exp)( iii cxx σ−−=γ , where nx ℜ∈  is the input to 
the network, ic  is the center of the i th node, and iσ  is 
its size of influence. The output of a RBNN, 

),( WxFy = , may be calculated either by a weighted 
sum as 

          ∑=
γ=

p

i ii xwWxF
1

)(),(       (7) 

or by a weighted average 

∑∑ ==
γγ=

p

i i
p

i ii xxwWxF
11

)()(),(   (8) 

where T
pwwwW ][ 21 K=  is a vector of network 

weights. The equations (7) and (8) may be rewritten as  

 )(),( xWWxF TΓ= ,   (9) 

where )(xΓ  is a set of radial basis functions defined by 
T

p xxxx )]()()([)( 21 γγγ=Γ K .  

Given a single RBNN, it is possible to approximate a 
wide variety of (nonlinear) functions )(xf  simply by 
making different choices for W . In particular, if there is 
a sufficient number of nodes  within the network, then 
there is some *W such as 

           ε<−
∈

)(),(sup * xfWxF
xSx

              (10) 

where xS  is a compact set, and 0>ε  is a finite constant 
provided )(xf  is continuous (Spooner and Passino, 
1999). 

The ideal control function (6) may be represented by 
a RBNN, uF  such that: 

  ),()(),,( ** vxxuWvxFu ukuu µ++=             (11) 

where the vector of ideal control parameters is defined as 
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and ),( vxuµ  is the representation error, which arises 
when ),( vxuu  is represented by an RBNN of finite size. 
From the universal approximation property of RBNN, it 
is known that for a given approximator structure, there 
exists *

uW  such that uu M≤µ  for some finite 0>uM . 
The subspaces xS  and vS  are defined as compact sets 
through which the state trajectories x of the system and 
the signal v  may travel. The subspace uΩ  is the convex 
compact set, which contains feasible parameters for *

uW .  

Assumption 3. Also, assume that the representation 
error ),( vxuµ  defined above is bounded by some 

0>uM , i.e. uu Mvx ≤µ ),( . If nLx ∞∈ , then ∞∈ Luk . 

Subsequently, an adaptive algorithm will be defined 
to estimate *

uW  with uŴ . These estimates are then used 
to define the control laws 

          )()ˆ,,( xuWvxFu kuu +=                (13) 

where )ˆ,,( uu WvxF  is the RBNN output used to 
approximate an ideal controller for the system (1). A 
parameter error vector is defined as .~ *

uuu WWW −=  

Define by yyeeee d
T

ttt −==
−δ

],,,[
)1(

K&  the output 

error vector, where yye dt −=  is the tracking error of 

the system (1), and T
dddd yyyy ],,,[ )1( −δ= K& and 

Tyyyy ],,,[ )1( −δ= K& .  

It is desired that the output error of the system (1) 
follows 00

)2(
2

)1(
1

)( =λ++λ+λ+ −δ
−δ

−δ
−δ

δ eeee L , 
where the coefficients 1,,1,0, −δ=λ Kii  are picked so 
that the polynomial: 

      0
2

2
1

1)( λ++λ+λ+= −δ
−δ

−δ
−δ

δ LssssL      (14) 

is Hurwitz. The system error dynamics may be expressed 
as  

         uxxye d )()()()( β−α−= δδ               (15) 

Adding and subtracting *)( uxβ  and using the definition 
of *u from (6), one obtains 

    )())(( *)()( tvuuxye d −−−= βδδ               (16) 

Let )(tak and )(ta uµ  be two scalar time functions 
and  

        
2

)(0
)1(

1
)( Pbetaeeyv

T

kd +λ++λ+= −δ
−δ

δ L  

              )sgn()(1 Pbeta T
uµβ+                (17) 

where δ×δℜ∈P  is a positive definite matrix defined by 
a Lyapunov matrix equation and δℜ∈b  is a vector. 
These will be both defined below.  

Using the definition of v  from (17), the system error 
dynamics may be expressed as 

      ( 2))(())(( * PbetauuxbΛee T
k−−β−+=&  

                 ))(sgn)(1 Pbeta T
uµβ−                 (18) 

where  
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and   

[ ] δℜ∈= Tb 1000 L .              (20) 

In the following analysis it will be used the fact that: 

           uu
T

uWuu µ−ζ=−
~* ,               (21) 

where 
u

uuT
u W

WvxF
∂

∂
=ζ

),,(
 with uu M≤µ . 

Consider the following update laws: 

    PbeW T
uuu ζη=&̂               (22) 

  2)( Pbea T
kk η=&               (23) 

  || Pbea T
u µµ η=&               (24) 

where 0>ηu , 0>ηk  and 0>ηµ  are adaptation gains. 
The update law (22) is used to estimate the dynamics of 
the system under control, while the update law (23) is 
used to stabilize the system. It can be seen that ka  in 
(23) monotonically increases if it is required that 

0)0( ≥ka . So, a projection algorithm may be required to 
ensure that this function does not become unnecessarily 
large. A result is given by the following theorem like as 
(Spooner and Passino 1999).   

Theorem 1. Given the system (1) satisfying 
Assumption 1 with reference model satisfying 
Assumption 2, and the controller satisfying Assumption 
3, then the control law (13) with adaptation laws (22), 
(23) and (24) will ensure that if the constant 

)(/)( maxmin0 PRB λλβ<  where R  is a symmetric 
positive definite matrix and minλ  and maxλ are the 
minimum and maximum eigenvalues of R and P, 
respectively, then: 

1) the system output and those derivatives, 
)1(,,, −δyyy K& , are bounded; 

2) the control signal is bounded, i.e. ∞∈+ Luu ku ; 
3) the magnitude of output error, || e , decreases 

asymptotically to zero, i.e. 0||lim =
∞→

e
t

; 

4) 0|ˆ|lim =
∞→

ut
W& , 0||lim =

∞→
kt

a& . 

Proof: Consider the following Lyapunov-type 
function: 
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where *~ kaa kk −=  ( *k  will be defined below), 

uuu Maa −= µµ
~ , with 0>uM , and δ×δℜ∈P  is a 
symmetric positive definite matrix. Taking the time 
derivative of V  yields: 
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                       (26) 
Since Λ  is negative definite, given some positive 

definite matrix R , there exists a unique symmetric 
positive definite matrix P , satisfying the Lyapunov 
matrix equation RPPT =Λ+Λ  so that the relation (26) 
may be written as: 
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Since )(/1/1 1 xβ≤β  and 0≥ka , 0≥µua , from 
(27), one obtains: 
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Since uu WW && ˆ~
= , kk aa && =~ , and uu aa µµ = &&~ , using the 

definition of the adaptive laws, relation (28) may be 
rewritten as: 
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By choosing PbeW T
uuu ζη=&̂ , 2)( Pbea T

kk η=& , 

|| Pbea T
u µµ η=& , that is the laws (22), (23) and (24), 

from (29) it follows that: 
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Now, we can chose 0* =k  and obtain 
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If B is chosen )(/)( maxmin0 PRB λλβ< , then 0<V& . 
Particularly, if )(xβ  is a constant, then: 

     )(/)(0 maxmin0 PRB λλβ<= .               (32) 

Required that cBPR −<βλ+λ− 0maxmin /)()( , where c  
is a finite constant, then: 
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This implies that ∞∈ LV , and thus ∞∈ Le 2|| . Given 

bounded reference signal, Part 1 is established. With 
exponential stability of zero dynamics, the system state x 
is bounded. Boundedness of the Lyapunov function thus 
ensures that ∞∈+ Luu ku , so Part 2 holds. By 
integrating of relation (33) from 0 to t , one obtains 

       ∫ τ
β

≥−
t

dectVV
0

2

0
||)()0(               (34) 

Since 0,0)( >∀> ttV , we have 
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0

2

0
Vdec

t

≤τ
β ∫ ,               (35) 

or, equivalently,  

              )0(|| 0

0

2 V
c

de
t

β
≤τ∫ ,               (36) 

so that ∞∈ Le 2|| . Using Barbalat’s Lemma, we thus 
establish that 0||lim 2 =

∞→
e

t
, thus we are guaranteed 

asymptotically stable tracking of the system (1) so Part 3 
holds. Much more, since the output y  and the input of 
the system dy  is bounded and 0||lim =

∞→
e

t
, convergence 



  

of the update law derivatives to zero is established by 
their definitions. 
 
 
3. SIMULATION EXAMPLE AND REMARKS 

The direct adaptive control strategy was applied to a  
nonlinear continuous biotechnological process for which 
dynamical kinetics and yield coefficients are not exactly 
known, described by the following differential equation 
system (McLain, et al. 1999), (Petre 2000):  

    XDXSX −µ= )(&                         (37) 

   DSSXSYS insx )()(/1 / −+µ−=&               (38) 

with X, S and inS , the biomass, the substrate and the 
influent substrate concentrations, D the dilution rate, µ  
the specific growth rate and sxY /  the yield coefficient. 
The specific growth rate )(⋅µ  is described by the 
following nonlinear inhibited Haldane model: 

                    










++
µ=µ

im
m

KSSK
SS

/
)(

2
               (39) 

where mµ  is the maximum specific growth rate, Km is 
the Monod constant, and iK  is the substrate inhibition 
constant.  

The nominal values of the process parameters are:  
N
mµ = 0.48 h-1,  N

mK  = 1.2 g/l,  N
iK  = 15 g/l, 

N
sxY / = 0.4 g/l, D = 0.2 h-1,  Sin = 20 g/l. 

The manipulated input and controlled output are 
chosen as the dilution rate D and the biomass 
concentration X, respectively. From equation (37), it can 
be seen that the system has relative degree δ  = 1. It is 
straightforward to show that the associated zero-
dynamics is locally stable via Jacobian linearization. 
 
3.1. Exactly feedback controller  

If we consider that the kinetics and yield coefficients 
in the fermentation model are known, then the exactly 
linearization feedback control law 

      
X

XXXS
D d

−
−λ+µ−

=
)()( 1*                (40) 

where the reference dX  is the desired reference, leads to 
the following error model: 

        ee 1λ−=&                (41) 
with  

      XXe d −=                 (42) 

It is clear that for any 01 >λ , the closed-loop system 
is uniformly asymptotic stable. 
 
3.2. Neural network (NN) adaptive controller  

Since the control law (40) contains the specific 
reaction rate )(⋅µ  considered unknown, this must be 
estimated by using a radial base neural network 
(RBNN). The control law (40) takes the form: 

      ),()(
)(

)()( 1
dku

d XxDxD
x

XXxD +=
β

−λ+α−
=    (43) 

where TSXx ][=  is the process state vector and 
)(/)()( xxxDu βα−= . In (43) the function Xx )()( ⋅µ=α  

is assumed to be unknown, and the function Xx −=β )(  
is assumed to be known and, much more, 

0|)(| 0 >β≥β x . Then a RBNN is used to construct an 
on-line estimate of )(xDu  respectively of )(xα  using 
the algorithm presented in subsection 2.3. 

The reference input Xd  is obtained by filtering a 
desired piecewise constant setpoint by the reference 
model 

spdd XXX 11 λ+λ−=&               (42) 

with 5.01 =λ , where spX  is the desired setpoint. 
The centers ci of the radial basis functions are placed 

in the nodes of a mesh obtained by discretization of the 
states X ∈[7.1, 7.7] and S ∈[0.65, 2.45] with dX = 0.05 
g/l and dS = 0.05 g/l, respectively.  

The responses of the closed loop system with the 
RBNN adaptive controller by comparison to the 
responses of the closed loop system with the nonlinear 
inverse dynamic controller are given in Fig. 1 and Fig. 2. 
So, in Fig. 1 it is shown the behavior of closed loop 
system (the controlled output X  and the control inputs 

uD  and D respectively) in the case (1) when the cinetic 
coefficient mµ  is time varying as: 

     ( ))10/(cos05.01)( tt N
mm π−µ=µ            (43) 

and in Fig. 2 it is shown the behavior of closed loop 
system in the case (2) when the yield coefficient sxY /  is 
time varying as: 

  ( ))12/(sin025.01)( // tYtY N
xssx π+=          (44) 

It must be noted that in both cases for the adaptive 
controller (13), (22), (23), (24) a full radial basis neural 
network with 481 Gaussian units with deviation 

05.0=σ i  was used. The controller parameter vector 

uŴ  is initialized to zero, and initial values of X, S and D 
are X(0) = 7.64 g/l, S(0) = 0.895 g/l and D(0) = 0.2 h-1, 
respectively. The parameter update law is (22) where 

=ηu 1.5 and 2IP =  (two order unit matrix).  
From Fig. 1 and Fig. 2 it can be seen that the 

behavior of adaptive system with NN controller is very 
good although the process dynamics is incompletely 
known and time varying.  

But it is clear that the number of radial basis 
functions that must be activated at every time step is 
very big and consequently the calculus time of control D 
increases. To reduce the RBNN dimension and implicitly 
to decrease the response time of RBNN controller, a 
procedure likes in (Petre 2000) and (Fabri and  
Kadirkamanathan 1996) may be used. This reduced 
neural network is obtained by activating only a minimum 
number of radial basis functions around the reference 
trajectory.  

It must be noted that a preliminary tuning for the NN 
controller is not necessary.  



  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Behavior of NN adaptive controller by  
comparison to an exactly feedback controller: case 1 

 

4. CONCLUSIONS 

A direct adaptive control strategy for a class of 
nonlinear systems for which the dynamics is 
incompletely known and time varying was presented. 
The controller design is based on the input-output 
linearizing technique. The unknown controller functions 
are approximated using radial basis neural networks. The 
form of the controller and the neural controller 
adaptation laws were derived from a Lyapunov analysis 
of stability. It was demonstrated that under certain 
conditions, the process state vector remains bounded and 
the plant output tracks with user specified dynamics the 
output of a linear reference model. The proposed 
algorithm was applied to a nonlinear and time varying 
biotechnological process. The obtained results demon-
strate the effectiveness of this controller by comparison 
to an exactly linearizing non-adaptive controller. 
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