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Abstract: The aim of the paper is to present the 
existence and appearance of the oscillations, based on 
resonant jumps, in systems described by Duffing-type 
equation with linear damping. The conditions necessary 
for jump producing and for oscillations appearance are 
emphasised. 
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1. INTRODUCTION 
 
The studies presented by (Duffing 1918) have brought 
the first solving of the non-linear systems and 
highlighted their importance. 
The most important results in this field have been 
collected in some reference books by several authors 
(Stoker 1950, Kauderer 1958, Minorsky 1962, Hayashi 
1964, Dinca et al. 1969 and Savin et al. 1973). 
There is a large category of non-linear systems described 
by the Duffing-type equation with linear damping. For 
such systems, in forced regime, where emphasised by 
various authors response-amplitude discontinuities for 
frequency or amplitude variation of the excitation-signal. 
In such non-linear systems, for constant values of the 
excitation-signal frequency and amplitude, the authors 
highlight the appearance of the oscillations through 
resonant jumps. 
The oscillations yields when in the system occur 
resonant jumps and at least one parameter of the 
system’s equation p(a) varies slowly together with the 
modification by jump of the response amplitude.  
 
 
2. THEORETICAL CONSIDERATIONS 
 
One considers a positioning system based on a DC 
motor with separate excitation and fed by an amplifier. 
There is analysed the case when, before the saturation 
appearance in the motor inductor’s magnetic circuit, a 
marked amplifier saturation occurs. In this particular 
case, the motor in its whole assembly must be 
considered linear. 
Let consider the diagram shown in the Figure 1, where 
g(x) is the nonlinear part and L the linear part of the 
system.  
Supposing that the static torque is missing, on the out-
going shaft of the system one obtains the following 

torque equilibrium equation: 
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According the block diagram in Fig.1, the output is 
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and then (1) can be put in the form: 
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The saturation-type of the nonlinearity given in Fig. 2 
can approximate through 
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where β<0 and so, the equation (4) becomes: 
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If  
tRtr ⋅= ωsin*)(  

then 

 

Fig. 1 The control-system structure 
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Fig. 2  Saturation of the nonlinearity 
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ω0 being the self pulsation and α the linear damping. So 
the equation (6) takes the form known as the Duffing 
equation: 
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where the notations are 
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The equation (8) describes the forced regime behaviour 
of the system given in Figure 1. For such a regime many 
authors (Duffing 1918, Hayashi 1964) have emphasized 
the amplitude jumps appearance at variation of 
frequency or excitation signal amplitude.  
In such systems can be highlighted the oscillations 
through resonant jumps if one of the equation 
coefficients has an inertial variation depending on the 
amplitude, when R and ω are constants. 
In order to respect the solution’s stability and oneness 
conditions it becomes necessary  
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Because the exact analytic solutions of the Duffing 
equation are unknown, the harmonic linearization 
method is applied. One considers the fundamental term: 

tatx ωcos)( ⋅=                                                            (11) 
Introducing this in equation (8) one obtains: 
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that involves 

0cos
4
3)( 32

0
22

0 =++− γβωωω Raa  

0sin2 =+ γωα Ra  
Removing γ between the equations (13) one obtains: 
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Transforming relation (14), it can be written in the form: 
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with  
0ω
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The function graph in the ( )aR ,/ 2
0ω  plane is called 

resonance curve. For two values β1 and β2 this has the 
aspect presented in Fig. 3. 
The geometrical locus of the points where the resonance 
curve allows horizontal and respectively vertical 
tangents can be obtained from  
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The geometrical locus of the points where the resonant 
curves allow horizontal tangents is: 
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which involves R =0. 
The points where the vertical tangents are allowed yields 
from: 
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and this means that 
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From (19) results: 
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Solving (20) in respect of the variable 2
0ω/R  it results: 
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This curve exists only for 
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Fig. 3 Explanatory for the resonance jump 
                             phenomenon 

a

0

B

C 

A

D

 β2  β1 

A1 

A2 

R / ω0
2R1 / ω0

2 

(7) 

(13)



The increasing or decreasing jump of the amplitude 
happens when the condition (18) is fulfilled 
simultaneously with  
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Let consider that the parameter has an inertial variation 
with delay, described by a general form as following: 

1 2

1 21 2
0 3

2 1 1 2

( ) ( ) 1
t t
T TT Tt Ka t e e

T T T T

τ τ

β β τ
− −

− − 
= + − + +  − − 

where 
ω
π2, 21 >>TT  and 1

2 21

21 ≥
+

TT

TT
               (26) 

If the condition of the amplitude-jumps appearance is 
achieved for R=R1, when the parameter β(a) has the β1 
value, than occurs an increasing by jump of the response 
amplitude, from the value that corresponds to the point 
A to the value that corresponds to the point B (v. Fig.3). 
At the same time, the parameter varies slowly towards 
the value β2, involving a corresponding change of the 
resonance curve. So, the operating point is moving 
slowly from B to C. In the moment when the resonance 
curve become tangent to the point C, the jump condition 
is again accomplished and the amplitude will decrease 
up to the value that corresponds to the point D. The 
parameter β suffers a low variation that determines the 
slowly displacement of the operating point from D to A, 
when the process will reiterate.  
Thus, in the system happens an oscillation process 
through resonant jumps, both of the amplitude and 
phase. The envelope of the excitation signal is a low 
oscillation. 
The variation that corresponds to the phase can be 
determined with the relations: 
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3. SIMULATION RESULTS 
 
A confirmation of the discussed phenomenon can be 
obtained by numerical simulation. Fig.4 presents the 
simulated resonance curves for several values of the 
parameterβ.  
In order to get the system behaviour, a simulating 
program in the Matlab-Simulink environment was 
performed. This used a fourth order Runge-Kutta 
algorithm to solve the Duffing equation.  
The oscillations get by resonant jumps for the following 
values of the parameters:  
λ=0.15, β0=0.02, βfinal=0.07, ω0=3rad/sec, ω=5.19 
rad/sec, R1=72, K=0.006  
and for different time-constants values are presented in 
Figs. 5-8.  
 

 
4. CONCLUSIONS 
 
The paper emphasised the oscillation’s appearance, 
based on resonant jumps, in systems described by 
Duffing-type equation with linear damping and 
nonlinearity having inertial variation with delay.  
The conditions necessary for jump producing and for 
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Fig. 4 Resonant curves for different values of the 
parameter β 
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Fig.5 Variable’s x oscillations get for 
T1 =50s, T2 =0, τ1 = 0, τ2 = 0, τ3 = 0 

Fig.6 Variable’s x oscillations get for 
T1 =50s, T2 =100s, τ1 = 0, τ2 = 0, τ3 = 0 
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oscillation’s appearance are determined. 
The simulation results obtained by numerical simulation 
confirm the theoretical considerations. 
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Fig.7 Variable’s x oscillations get for 
T1 =50s, T2 =100s, τ1 = 20s, τ2 = 0, τ3 = 0 
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Fig.8 Variable’s x oscillations get for 
T1 =50s, T2 =100s, τ1 = 20s, τ2 =10s, τ3 = 15s 


