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Abstract: This experiment consists of a rigid link 
(pendulum) rotating in a vertical plane. The rigid link is 
attached to a pivot arm, which is mounted on the load 
shaft of a DC-motor. The pivot arm can be rotated in the 
horizontal plane by the DC-motor. The DC-motor is 
instrumented with a potentiometer. In addition, a 
potentiometer is mounted on the pivot arm to measure 
the pendulum angle. The principal objective of this 
experiment is to balance the pendulum in the vertical-
upright position and to position the pivot arm. Since the 
plant has two degrees of freedom but only one actuator, 
the system is under-actuated and exhibits significant 
nonlinear behavior for large pendulum excursion. 
Our purpose is to design a robust controller in order to 
realize a real-time control of the pendulum position 
using a Quanser PC board and power module and the 
appropriate WinCon real-time software. For the 
controller design is used a well-known robust method, 
called LQG/LTR (Linear Quadratic Gauss Ian/Loop 
Transfer Recovery) which implements an optimal state-
feedback. 
The real-time experiment is realized in the Automatic 
Control laboratory. 
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SOFTWARE DESCRIPTION OF THE 
EXPERIMENT 
 
WinCon™ is a real-time Windows 98/NT/2000/XP 
application. It allows you to run code generated from a 
Simulink diagram in real-time on the same PC (also 
known as local PC) or on a remote PC. Data from the 
real-time running code may be plotted on-line in 
WinCon Scopes and model parameters may be changed 
on the fly through WinCon Control Panels as well as 
Simulink. The automatically generated real-time code 
constitutes a stand-alone controller (i.e. independent 
from Simulink) and can be saved in WinCon Projects 
together with its corresponding user-configured scopes 
and control panels. 
WinCon software actually consists of two distinct parts: 
WinCon Client and WinCon Server. They communicate 
using the TCP/IP protocol. WinCon Client runs in hard 

real-time while WinCon Server is a separate graphical 
interface, running in user mode.  
WinCon supports two possible configurations: the local 
configuration (i.e. a single machine) and the remote 
configuration (i.e. two or more machines). In the local 
configuration, WinCon Client, executing the real-time 
code, runs on the same machine and at the same time as 
WinCon Server (i.e. the user-mode graphical interface). 
In the remote configuration, WinCon Client runs on a 
separate machine from WinCon Server. The two 
programs always communicate using the TCP/IP 
protocol. Each WinCon Server can communicate with 
several WinCon Clients, and reciprocally, each WinCon 
Client can communicate with several WinCon Servers. 
The local configuration is shown below in Figure 5. The 
data acquisition card, in this case  the MultiQ PCI, is 
used to interface the real-time code to the plant to be 
controlled. The user interacts with the real-time code via 
either WinCon Server or the Simulink diagram. Data 
from the running controller may be plotted in real-time 
on the WinCon scopes and changing values on the 
Simulink diagram automatically changes the 
corresponding parameters in the real-time code. The 
real-time code, i.e. WinCon Client, runs on the same PC. 
However, the real-time code takes precedence over 
everything else, so hard real-time performance is still 
achieved. 

 
Figure 5: The local configuration 

 
The PC running WinCon Server must have a compatible 
version of The MathWorks' MATLAB installed, in 
addition to Simulink, and the Real-Time Workshop 
toolbox. WinCon presently supports MATLAB 5.3.x or 
6.x (i.e. Release 11.x or 12.x, respectively) with the 
corresponding Simulink (i.e. Version 3.0.x or 4.x, 
respectively) and Real-Time Workshop (i.e. Version 
3.0.x or 4.x, respectively). Additionally, the Control 
System Toolbox can be useful for controller design. 



 
Figure 6: The Simulink model for the real-time experiment 

 
Simulink Real-Time Application Model 
 
In Figure 6 is presented the Simulink model for the real-
time experiment. Using RTW (Real-Time Workshop) 
provided with MATLAB/Simulink, the WinCon 
software generate from this Simulink model the real-
time code used for the pendulum control. 
For real-time control purposes, the above model 
generates the reference for the pendulum position using a 
Signal Generator and a Rate Limiter. Thus the 
commands are ramped than stepped. This is because 
large step inputs would be too vigorous for the controller 
to stabilize. 
Servo Angle Bias Removal and Pendulum Bias Removal 
are grouped Simulink blocks. 

 
Figure 7: The bias removal block 

 
As soon as the time is greater than a pre-defined amount 
of milliseconds (set in the dialog box of switch), the 
output of the switch is the value applied at the first line. 
When the switch trips over, the output of the switch is 
maintained to the last value before is switched over. The 
purpose of this block is to the user can hold the 
pendulum upright and the cart at x = 0. It then uses the 
measured bias to obtain the actual angle and cart 
positions. 
Calibration and differentiation block converts the 
rotating arm position voltage and pendulum angle 
voltage to the appropriate units. Each signal is then 
differentiated to obtain the angular rates in degrees/sec. 

The State-feedback block contains the four elements of 
the state feedback LQG/LTR controller that we design. 
 

 
Figure 8: Calibration and differentiation block 

 
Figure 9: the State-feedback block 

 
ROTARY INVERTED PENDULUM NONLINEAR 
AND LINEAR MODEL  
 
The Rotary Inverted Pendulum module shown in Figure 
10 consists of a flat arm at the end of which is a hinged 



potentiometer. The inverted pendulum is mounted to the 
hinge. Measurement of the pendulum angle is obtained 
using a potentiometer. The objective of the experiment is 
to design a feedback control system that positions the 
arm as well as maintains the inverted pendulum vertical. 
This problem is similar to the classical inverted 
pendulum (linear) except that the trajectory is circular. 

 
Figure 10: Schematic of Rotary Inverted Pendulum 

attached to a servo plant SRV02 
 

 
Figure 11: Simplified model for rotary inverted 

pendulum 
 
Consider the simplified model in Figure 12. Note that lp 
is half Lp, the actual length of the pendulum (lp =0.5Lp ).  
The nonlinear differential equations are derived to be: 

 
where 
T :  input torque from motor ( Nm ) 
mp:  mass of rod (Kg) 
lp: centre of gravity of rod (m) (half of full length) 
Jb :  Inertia of Arm and gears(Kgm ) 
θ :  Deflection of arm from zero position(Rad) 
α : Deflection of pendulum from vertical UP 

position (Rad) 
The linear equations resulting from the above are: 
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Note that the zero position for all the above equations is 
defined as the pendulum being vertical “up”.  
The motor equations are: 

 
where 
V (volts) :   Voltage applied to motor 
Im (Amp):   Current in motor 
Km (V/ (rad *sec ):  Back EMF Constant 
Kg :  Gear ratio in motor gearbox 

and external gears 
θ  (Rad):   Arm angular position 
The torque generated by the motor is: 

 
The linear model that was developed is based on a torque 
T applied to the arm. The actual system however is 
voltage driven. From the motor equations derived above 
we obtain: 

 
Finally, we obtain the following linear model: 
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LQR CONTROL FOR ROTARY INVERTED 
PENDULUM 
Assuming the pendulum is almost upright, a state 
feedback controller can be implemented that would 
maintain it upright (and handle disturbances up to a 
certain point ). The state feedback controller is designed 
using the linear quadratic regulator and the linear model 
of the system. 
The LQG/LTR theory is a powerful method for the 
control of linear systems in the state-space domain. The 
LQR technique generates controllers with guaranteed 
closed loop stability robustness property even in the face 
of certain gain and phase variation at the plant 
input/output. In addition, the LQR-based controllers 
provide reliable closed-loop system performance despite 
of stochastic plant disturbance. The LQ control design 
framework is applicable to the class of stabilizable linear 
systems. 
Briefly, the LQG/LTR theory says that, given a nth order 
stabilizable system 

0)0(,0),()()( xxttButAxtx =≥+=&  

where ntx ℜ∈)( is the state vector and mtu ℜ∈)( is 
the input vector, determine the matrix gain 

nxmK ℜ∈ such that the static, full-state feedback 
control law 

)()( tKxtu −=  
satisfies the following criteria 



a) the closed-loop system is asymptotically stable 
and 

b) the quadratic performance functional 
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is minimized. 
Q is a nonnegative-definite matrix that penalizes the 
departure of system states from the equilibrium and R is 
a positive-definite matrix that penalizes the control input. 
The solution of the LQR problem can be obtained via a 
Lagrange multiplier-based optimization technique and is 
given by 

PBRK T1−=  
where nxnP ℜ∈ is a nonnegative-definite matrix 
satisfying the matrix Riccati equation 

01 =−++ − PBPBRQPAPA TT  
Note that it follows that the LQR-based control design 
requires the availability of all state variables for 
feedback purpose. The state variables for the laboratory 
experiment are 



















=

)(
)(
)(
)(

)(

t
t
t
t

tx

α
θ
α
θ

&

&
 

For our laboratory model, the pivot arm angle θ  and the 
pendulum angular position α are measured by two 
potentiometers. The pivot arm angular velocity θ&  and 
pendulum angular velocity α& are not measured by any 
physical sensor, instead, we numerically compute θ&  and 
α& by implementing a low-pass differentiator, e.g. 

20
20
+s

s , as a part of the overall control scheme. 

In order to design an LQR controller, we need the plant 
dynamic parameters A and input matrix B. 
 
EXPERIMENTAL RESULTS AGAINST 
SIMULATION RESULTS 
The LQG/LTR design method uses a linear model for 
the real plant. Due to nonlinearities the real experimental 
behavior is not identical with the simulated one. 
For example, in the first experiment we use the 
following design values: 

q = diag([.5 100 .1 0]); 
r = .05; 

k=[-0.0552   -1.1864   -0.0602   -0.1346] 
 

As we can see, the rotary arm error is not hardly 
penalized comparing with the pendulum angle. 
We give e square waveform reference of 30 degrees and 
we obtain the behavior presented in Figure 12. 
 

 
Figure 12. 

 
We obtain a smooth command wich lead to a 
nonoscillant pendulum, but we have a great steady-state 
error. 
Increasing the weight for the rotary arm error, we obtain 
the results from Fig. : 
q = diag([20 200 .1 0]); 
r = .4; 
k =[   -0.1234   -0.9322   -0.0681   -0.1277] 

 
Figure 13. Experimental response  

 
The steady-state error is eliminated but we obtain an 
oscilant behaviour. 
It is very important to obtain an accurate model of the 
rotary inverted pendulum experiment. With this model 
we are able to simulate the evolution of the control 
architecture and to tune the feedback parameters in order 
to obtain better performances. 
 
With the above model (saturation +/- 5V, Dead zone +/-  
0.25V, backlash 0.3V) we obtain the following simulated 
response: 

 
      Figure 14. Simulated response 



 
Figure 15.  Simulink model of the inverted pendulum control architecture 

 
As we can see, the experimental and simulated 
responses are quite similar. However, if we want to 
regulate precisely the pendulum position, we can 
introduce another state, the integral of the rotary arm 
error. The state vector becomes: 
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The state feedback bloc in the control architecture is 
modified as follows: 

 
Figure 16. The state feedback block with integrator 

 
For example, using a new state feedback, we obtain: 
k =[   -0.0700   -0.9000   -0.0700   -0.1000   -0.0200] 
 
 
 
 

 
 

 
     Figure 17. Experimental response with integrator 
 

 
        Figure 18. Simulated response with integrator 
 
The new control can be tested against pendulum 
angular perturbations. The experimental results are 
presented in Figure 17.  First graph represents the 
angular position and the second pendulum angle. 



 

 
Figure 19. Perturbation rejection test 

 
Perturbations about +/- 10 degrees can be rejected, fact 
that proves the robustness of the LQG/LTR design 
method. 
Another testing set can be done with sinusoidal 
references. The following figures illustrate the 
experimental and simulated test to a sinusoidal input of 
0.04 Hz with an amplitude of  30 degrees. 

 

 
Figure 21. Experimental and simulated response to   

sinusoidal reference with integrator 
 

CONCLUSIONS 
 
In this article is presented a Quanser Consulting Inc. 
laboratory experiment: the Rotary Inverted Pendulum 
stabilization and control.  
Using a single command, the DC motor voltage, we are 
able to control two outputs: the rotary arm angular 
position and pendulum verticality. 
The controller design method is LQG/LTR, a robust 
state feedback. 
Using a set of experiments is developed a nonlinear 
model of the rotary inverted pendulum. Using 
MATLAB/Simulink design environment we are able to 
obtain the state feedback vector in two cases: without 
and with an integral over the rotary arm angular error. 
The experimental results are presented using Simulink 
and WinCon plots. 
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