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Abstract: In this paper, the authors propose some 
practical behaviour in control and supervising of 
complex process (MIMO), in presence of actuators 
faults. The fault detection and isolation (FDI) problem is 
an inherently complex one. Because of this reason, we 
have considered the case when one or more actuators are 
blocking in a fixed position or are not supplied (in this 
case the servomechanism are in the total closed or total 
open position). The immediate goals is to preserve the 
stability of process and, if is possible, to control the 
process in a slightly degraded manner. 
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CONTROL SYSTEM SYNTHESIS IN FAULT 
FREE CONDITIONS 

 
In most cases, industrial processes have multiple 

inputs and outputs. For these situations, are known 
methods for analyse and synthesis of control systems. 
We consider the structure represented in figure 1. The 
significance’s of the used notations are the followings: 

 
� C1…Cn - controllers 
� D.U. - device for uncoupling of outputs 
� A1…An - actuators 
� v1…vn - references inputs 
� y1…yn - outputs of process 
� r1…rn - outputs generates by the controllers 
� c1…cn - outputs of D.U. block 
� u1…un - real inputs of the process 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

To illustrate the classical algorithm used for synthesis of 
D.U., consider the next example. Let be the transfer 
matrix attached to the process: 
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and the transfer function for actuators, who are 
considered proportionally, for simplify the calculus: 
 

    (2) 







=

20
01
ak

ak
AK

 
The transfer matrix for uncoupling device is: 
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To obtain a faster response of the system, we can choose 
D(s) with the form: 
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For carry out the uncoupling, it is necessary that the 
transfer matrix: 
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to has the form: 
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So, we have: 
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and respectively: 
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Another suggestion of the authors, if it is possible, is to 
impose the G(s) matrix with the form: 
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In this case we respect the dynamic input-output of the 
process on the principals channels. In these conditions, 
for D(s) with generally form (3), we have the relations: 
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From (13), (14), (15) and (16) we obtain the expression 
of the components of D(s) matrix: 
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If we consider also the transfer matrix attached to the 
controllers: 
 

                 (21) 







=

)(20
0)(1)(

sC
sC

sC

 
the transfer matrix for the structure represented in fig. 1 
is: 
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If 
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we obtain for the controllers the next expressions: 
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CONTROL SYSTEM SYNTHESIS IN 
FAULT CONDITIONS 

 
We suppose the situation when one or more 

actuators are failed during the service. It is a situation 
with serious consequences for the process and which can 
have catastrophic result. To simulate this case, we 
consider the modify structure represented in figure 2. 
In this figure, ur1…urn represent the real inputs of the 
process. The expression of uri(t)  is: 
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If the actuator Ai is blocked in udi0 position, we simulate 
this with kdi=1. So, it is possible to write: 
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and I is the unit matrix. In this case the state equations of 
the process are 
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The output vector for the system represented fig.2 
(closed loop) is: 
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where Kd is fault matrix. The stability of the structure is 
assure if and only if the solutions of the characteristic 
equation are located in the left half plane of complex 
plane s. 
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Let be the next equations for the process in steady-state, 
fault free (optimal conditions), derived from (1): 
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Let be now u  and respectively  the steady-state 
vectors in fault conditions. The problem is to know if 
exist an acceptable inputs for the rest of actuators when 
one of them is failed (blocked). To exemplify, consider 
again the case (1). Suppose that the actuator A
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blocked and the corresponding input is ud10. In steady 
state, we have: 
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Fig. 3. 



From (32) and (33) results: 
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The relation (36) represent a line ( . We have the 
graphical representation in figure 3. 

)δ

 
If the pair is an acceptable solution, we have 
an affirmatively answer. Simultaneously, we impose the 
reference for the valid input: 
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A DESIGN EXAMPLE 
 

The proposed approach is applied to a heat-
exchanger plant, with the structure represented in figure 
4. The mathematical model is: 
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We can attach a matrix of transfer to the liniarised model 
in steady state point, for constants inputs 
( T ). So we have: ..,.,., ctaiFctgFctaiTctgi ====
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In steady state we have: 
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Suppose that the first actuator is failed and the proper 
output, for the same command of D.U., has the value 

, which is different by the correct value W .  10injdW *
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In these conditions, we have: 
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To maintain the same value for the final temperature 
(T ), result for the second input (in fault condition) the 
value: 
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If this value is technological acceptable for the process, 
we try to obtain this command. One possibility is to keep 
the same structure (fig. 1) but we can modify the D.U. 
block to preserve the interinfluence between channels, 
very usefully in actuator fault conditions. 
 
 

CONCLUSIONS 
 

In this paper, the authors propose some 
practical behaviour in control and supervising of 
complex process (MIMO), in presence of actuators 
faults.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5. The control in failure conditions has an 
acceptable solution.  

 
We have considered the case when one or more actuators 
are blocking in a fixed position or are not supplied (in 
this case the servomechanism are in the total closed or 
total open position). The immediate goals is to preserve 
the stability of process and, if is possible, to control the 
process in a slightly degraded manner. 
We propose a method to find the new values for the 
valid commands, in presence of a failed actuator. To 
control the process with less commands like usually, it is 

necessary to preserve the interinfluence between the 
channels. 
It is very important to say that this method just offers a 
possibility to action in failure conditions and is not 
generally valid. The position of blocked actuator modify 
the position of (δ) line like in fig. 5 and 6.   
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Fig. 6. The control in failure conditions do not has an 
acceptable solution. 
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