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Abstract: In this work, statistical signals processing are 
employed in fault detection and isolation scheme. The 
procedure was applied to detect the failed sensor and 
suppose the use of mathematical model of process and 
the correlation (covariance) function calculated in real 
time between the signals, which represent the 
commands, and the measurements. If the values of these 
statistical functions are great, that means the signals are 
correlated. When these values are small and this 
situation is preserved long time that means we have a 
failed sensor. 
The technique was tested by simulation and the results 
are good. 
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INTRODUCTION 
 

Changes (faults) can make the system unsafe and 
less reliable. Productivity of the automatic system can 
degrade because changes can impose performance 
limitations on the system and may also require frequent 
system shut downs for its maintenance. In the case of 
technologically challenging applications, like space or 
underwater technology, where a system's full automation 
is expected, the presence of changes can limit what 
engineers can accomplish in their designs. The finally 
effect of the changes is on environmental and human 
safety, cost and ability of creation of autonomous 
system. 

Fortunately, al of the above-described situations can 
be managed by giving the system self-diagnostic 
capabilities, which allow it to detect any changes, 
analyze them and handle them appropriately. The 
system's ability to learn how its environment has 
changed makes it more self-sufficient and intelligent, 
and improves its behavioral decision. Self-diagnosis of 
the system can be accomplished by the introduction of 
either analytical or hardware redundancy. In the 
hardware redundancy approach, additional physical 
instrumentation is introduced, sensors for instance. In the 
analytical redundancy approach, additional software is 
introduced which usually employs model-based 
techniques (Kmelnitsky, 2002), (Polycarpou, Helmicki, 
1995), (Polycarpou, Trunov, 2000). 

Analytical redundancy is less expensive, much 
easier to upgrade and has more potential. It requires a lot 
of computational resources, because of its on-line 
application (Kmelnitsky, 2002). 
 
 

STATISTICAL SIGNAL PROCESSING 
 

Let consider the signal x(t) and y(t) like stationary 
random processes. The function of cross-correlation is a 
statistical quantity defined as: 
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       Also, the cross-covariance is the mean-removed: 
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or, in terms of the cross-correlation 
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where µx and µy are the mean values. 
       For continuous stochastic process, the cross-
correlation function is:   
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       In practice, it is necessary to estimate this sequence, 
because it is possible to access only a finite segment of 
the infinite-random process. A common estimate based 
on N samples of x(t) and y(t) (xn and yn) is the 
deterministic cross-correlation (5) also called the time-
ambiguity function. 
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where we assume for this discussion that xn and yn are 
indexed from 0 to N-1 (MathWorks, 1999). In the same 
conditions, the cross-corelation function (3) and the 
mean values (µx and µy) have the expressions (6), (7) and 
(8). 
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       An important parameter who characterize the 
correlated process is the cross-correlation coefficient 
(Spataru, 1987): 
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where 
 
 xx D=σ                 (10) 
  
 yy D=σ                 (11) 

 
and Dx , Dy  represent the variances with the expressions: 
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       The values of coefficient (9) are limited to the 
interval: 
 
 1),(0 ≤ρ≤ nn yx                (14) 
 
For |ρ|=1 we have two stochastic processes full 
correlated, during for ρ=0, the processes are uncorrelated 
(it is very possible to be independents). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FAULT DETECTION AND ISOLATION 
SCHEME 

 
       The structure used for fault detection and isolation is 
represented in fig. 1. In this case, the output of the 
process is measured by two identically sensors. If p < 1 
is the probability to have one failed sensor, the 
probability to have simultaneous two failed sensors 
(considered like two independent process) is: 
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       To install two sensors is not a difficult problem, but 
in this case the voting method is inapplicable. The author 
propose for the Fault management decision block (fig.1) 
the structure represented in fig. 2.    
       The idea consists to processing the signal purchased 
from the process, u  and to calculate 
an equivalent output signal  and to generate an 
alarm signal if the failures arise. The steps are the next: 
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and 
 

0,2 ),( ρ≥ρ +mnn zu                (17) 
 
we can accept that the both sensors are in good 
conditions; 0ρ is a decision threshold and m is fixed 
in function by the time delay constant of the 
sensors. 

� The value of equivalent output signal is 
calculated with the formula: 
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Fig 1. The structure with two sensors. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

where ri, i=1,2, are coefficients calculated in 
interaction by the two correlation coefficients: 
ρ(u,z1) and ρ(u,z2). If the both sensors are fault free, 
ri=1. If on decide that one of sensors is failed, ri=0, 
for eliminate the influence of erroneous signal. So, 
we can say  . { }1,0∈ir

       The decision block from fig. 2 has the internal law: 
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       The structure of the signal processing block (fig. 2) 
is a complex one and is represented in fig. 3.  
       The intermediary signal |z1r1- z2r2| can be used like 
fault alarm signal Fa. If the both sensors are in good 
conditions (fault free), than 
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If a failures is arising, than 
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 Fig. 2. Structure of the block for fault management. 

ρ(u,z1) r1 Correlation 
Rz1u(τ) 

Decision 
block 

 
C

ro
ss

-c
or

re
la

tio
n 

co
ef

fic
ie

nt
 

 
Si

gn
al

 p
ro

ce
ss

in
g 

ze(t) z1(t) 

u(t) 

Fa z2(t) 

Correlation 
Rz2u(τ) r2 Decision 

block ρ(u,z2) 

 
 
       Another application is represented by the case when 
we use a single sensor. A possibility to detect a failure, 
at the sensor level, consist in the utilization of a similarly 
scheme (fig. 4). This time, the role of the second sensor 
is assumed by the mathematical model, which represents 
the entire process (input-output). The structures of the 
blocks for fault management and for signal processing 
are the same. 
 
 

APPLICATION FOR FLIGHT CONTROL  
SYSTEM 

 
       We consider an aircraft during the landing phase 
(fig. 5). The mathematical model is (Shin, Krishna, 
Yann-Hang, 1985): 
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 Fig. 3. Structure of the block for signal processing. 

r1 

z1r1+ z2r2 + 
z1 

z1r1 + 

+ z2r2 ze 1/2 z2 
+ 

- r2 z1r1 |z1r1- z2r2| 
Fa 

+ 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
where: 
 ωy(t) - pitch angle rate. 
 Θ(t)  - pitch angle. 
 w(t)  - altitude rate. 
 up(t) - elevon deflection. 
The aircraft is unstable, the eingevalues being: 
 
 λ1=-0.5016+j0.8670 
 λ2=-0.5016-j0.8670 
 λ3= 0.0032 
 
After LQR compensation: 
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the matrix K has the expression: 
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where P is the solution of Ricatti algebraic equation: 
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In this condition K matrix is: 
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Fig. 5. The structure with one sensor and mathematical model. 

 
and the eingevalues for the compensate system are: 
 
 λ1=-3.1839+j5.2977 
 λ2=-3.1839+j5.2977 
 λ3=-6.3634 
 
       In fig. 7 are represented the stabilized structure of 
the aircraft. Very important in this phase of the landing 
is the vertically speed w(t). So, the algorithm described 
above was tested by simulation.    
      First, on considers the case when the signal is 
measured by two sensors (fig. 1). For simplify the study, 
let be the transfer function of the sensor as the form:  
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or equivalent the input-output equation is: 
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       The simulated failure consist in a disconnection, 
which appear at time t0 , of the second sensor. The real 
signal is substitute, from this moment by a noise with 
zero mean. 
      The experimental results are represented in figures 7 
(vertically speed reference for control system), 8 (the 
amplitude of command for elevon actuator), 9 (vertically 
speed w), 10 (pitch angle rate) and 11 (pitch angle). 
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Fig. 6. The aircraft during the landing phase. 
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Fig. 7. Vertically speed reference 
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Fig. 8. The amplitude of command for elevon actuator. 
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Fig. 9. Vertically speed w (both sensors are fault free). 
 
 
       We have considered two sensors for vertically speed 
w. Also, the speed reference (u) and the altitude rate 
measurement (zi) are supposed stochastic process. For 10 
seconds data acquisition, the correlation coefficients 
have the values: 
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Fig. 10. Pitch angle rate. 
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Fig. 11. Pitch angle. 
 

0 2 4 6 8 10
-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

Time [seconds]

al
ly

 s
pe

ed
 [m

/s
]

V
er

tic
a

1 

2 

 
 

Fig. 12. Vertically speed w. 
1 - signal from failed sensor (disconnect); 2 - signal from 

the sensor that is in good condition. 
  

     If we suppose that one of sensors is disconnected we 
have the situation revealed in fig. 12. The coefficients 
are in this case: 
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Fig. 13. Vertically speed w. 
1 - signal from failed sensor (blocked); 2 - signal from 

the sensor that is in good condition. 
 
       If we have a decision threshold 0ρ (e.g. 0ρ =0.5) it 
is possible to select the correct signals. In 
correspondence with (19) we have for (29): 
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       We have the same situation when the output yT of 
the failed sensor is constant in time (fig. 13).   

 
       With the block represented in fig. 3, is selected 
always the correct signal. In the second case, it is 
generate an alarm signal.   
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