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Abstract: The main purpose of the paper is to present a 
robust practical method for experimentally decoupling, 
compensating and control of two input-two output 
process. The decoupler channels are first order lag plus 
dead time elements, which satisfy the following 
requirements: the direct channels have unit gain and two 
channels have dead time equal to zero. The decoupler 
can be simplified in addition taking two appropriate 
channels with the lag time constant equal to zero. After 
decoupling, each output of the decoupled process is 
controlled by a special method, which consists in 
monotonic compensating and standard IMC control of 
the both direct channels of the decoupled process. The 
results obtained by simulation validate the proposed 
control procedure.  
 
Key words: decoupling controller, decoupler, monotonic 
compensation, standard IMC algorithm.  
 
1. INTRODUCTION 

 
Many industrial processes are multivariable, exhibiting 
input-output cross-coupling which cannot be neglected 
because it provides difficulties in process control. 
Multivariable process control using monovariable 
controllers cannot yield satisfactory performance, 
because of mutual interactions between monovariable 
loops. The multivariable controller use makes possible 
partial or total elimination (only in the theoretical case) 
of these self-disturbing interactions. Usually, a 
multivariable controller with n inputs and n outputs 
consists of a block with n monovariable controllers 
(possibly of PID type) and a process decoupling block. 
Using a decoupling controller, the system tuning 
problem is reduced to the independent tuning of the 
monovariable controllers of every control loop. Most of 
the controller synthesis methods for multivariable 
control systems are based on knowing the process model 
as precise as possible. The relation between the process, 
decoupler and decoupled process transfer matrixes has 
the form: 
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From decoupling equations 
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we obtain the decoupled transfer functions: 

                 










−=

−=

22

22
22

11

11
11

)1()(

)1()(

G
DfG

G
DfG

d

d

 ,                (3) 

where 

                                
2211

2112
GG
GGf =                  (4) 

is the process coupling factor. Because there are two 
decoupling equations and the decoupler has four transfer 
functions, two of the decoupler transfer functions, 
usually the diagonal transfer functions  and , 
can be arbitrary chosen. The non-diagonal transfer 
functions of the decoupler are then given by the 
expressions: 
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Usually, to have a simple decoupler structure, the 
diagonal transfer functions  and  are chosen 
equal to 1. If the transfer functions  and  are 
improper (not realizable), then  and  are chosen 
as follows  
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where the time constants τ  and τ  are 5…10 times less 
than the process dominant time constant. In this case 

1 2

                  










+
−=

+
−=

)1(

)1(

222

21
21

111

12
12

sG
GD

sG
GD

τ

τ
 .                (7) 

Usually, process modeling and identification tasks are 
time-consuming and demand specific knowledge in   
control   theory    and   an    advanced    practical 
experience. Moreover, the decoupling controller 



structure is dependent of the process model structure. In 
the case of strong cross-interaction, even if the process 
has a monotonous and finite step response on the direct 
channels, the direct channels of the decoupled process 
can be non-monotonic (of non-minimal phase, with large 
overshoot or of oscillating type) or even unstable. For 
such decoupled process, the monovariable controllers 
design is not a simple problem and the control 
performance may not be acceptable. 
The proposed control method eliminates or reduces these 
disadvantages. In the proposed structure of a 
multivariable control system (fig. 1), F1 and F2 are 
serial filters for decoupled process compensating, and 
C1 and C2 are standard IMC controllers. 
 

   

           Fig. 1. Proposed structure for multivariable 
                            control system 

The proposed decoupling solution is based on the 
following idea: two parallel-opposite channels with the 
same gain, the same dead time and very  close transient 
time accomplish a satisfactory compensation for a 
process having all the input-output channels of 
proportional type (with finite step response). The 
transient time is the whole response time to input step 
change minus the dead time. Each process channel is 
thus described by 3 parameters, which can be easily 
determined by experimental way: gain , dead time 

 and transient time , i.e. 
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2. FIRST TYPE DECOUPLER  

The proposed decoupler fulfils the following conditions: 
  1) each channel is at most first order lag plus dead time 
element; 
  2) the direct input-output channels have gain equal to 1; 
3) at least two channels are dead time equal to zero. 

Taking into account the first two decoupling conditions, 
the decoupler structure is in the form 
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with 
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From the third decoupler property and the dead time 
compensation relations 

       τ + , τ ,          (10) 22212111 pp τττ =+ 11121222 pp τττ =+ +

we get the decoupler dead-times such as: 

       τ − ;   222121112122 ,0 pppp τττττ ==⇒≤

       τ − ; 212211212122 ,0 pppp τττττ ==⇒>

       τ − ;  111212221211 ,0 pppp τττττ ==⇒≤

       τ  .            (11) 121122121211 ,0 pppp τττττ −==⇒>

From here, it follows that depending on the process dead 
times, the decoupler structure can be in four ways:  with 
zero dead time at 1-1 or 2-1 channel, and at 1-2 or 2-2 
channel. The decoupler has eight parameters: two gains, 
four lag time constants and two dead times. The 
decoupler designed in such a way can be experimentally 
refined by suitably adjusting the two lag time constants 

 and T . If the steady state decoupling is perfect, the 
refining operation yields 
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where  and  are the step input responses of 
decoupled process crossing channels.  
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As an example, for the multivariable process proposed 
by Ho, et al. (1996) 
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the unadjusted transfer matrix of the first type decoupler 
is 
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3. SECOND TYPE DECOUPLER  

The general structure of the second type decoupler has 
the form (8), but it fulfils in addition the condition: 4) at 
least two channels are lag time constant T  equal to 

zero. Consequently, the decoupler has the structure 
simpler than that of the first type decoupler. Moreover, 
the decoupled process is faster. Taking into account the 
fourth decoupler property and also the relations 
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which approximately express the equality of mutual 
compensation channel transient times, it follows the 
decoupler lag time constants: 

          ;     4/)(,0 222121112122 tttt TTTTTT −==⇒≤
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From here it follows that depending on the process 
transient times, the decoupler structure can be in four 
ways:  with zero lag constant time on 1-1 or 2-1 channel, 
and on 1-2 or 2-2 channel. The decoupler gains and dead 
times follow from (9) and (12), like the first decoupler. 
Therefore, depending on the process dead times, the 
decoupler structure can be also in four ways. Each of the 
16 possible structures can be experimentally refined by 
suitably adjusting the non-zero time constants. The 
decoupler has only six parameters: two gains, two lag 
time constants and two dead times.  For example, for the 
multivariable process (13), the unadjusted transfer 
matrix of the second type decoupler is 
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The second decoupler form (17) is much simpler and 
faster that the first form (14). 

4. DECOUPLED PROCESS COMPENSATION 

Compensating both direct channels of the decoupled 
process has the aim to improve its dynamics, so that the 
input step response of each channel to be monotonic and 
as fast as possible (Cîrtoaje, 2002). The most usual 
method of monovariable process compensating is to 
connect a lead-lag filter in front of the process. The lead-
lag transfer function has the form 
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For robustness reason, in the case of a stable and 
monotonic process, we recommend a filter time constant 
with the value 

       T ,                                (19) 10/tf T=

where  is the transient time. The filter gain  must 

be chosen as large as possible, but respecting two 
condition: a) , for robustness reason; b) the 
compensated process to remain also monotonic. In the 
case of a stable but non-monotonic process, we 
recommend that  to be equal to zero and T  to be 

sufficiently large so that the compensated process to 
become monotonic.  
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5.  DECOUPLED PROCESS CONTROL 

Each direct channel of the compensated process is 
controlled by the standard IMC method (fig. 2). The 
controller R is a serial connection between a 
proportional element with the gain  and a positive 
feedback loop, which is designed by means of the 
compensated process model . In the forward 
path of the controller loop there is a proportional 
element having the gain equal to the inverse of the 
model gain. 
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               Fig. 2. Proposed IMC variant 

Since the input step response of the compensated process 
is monotonic, we may consider its model in the form 
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with  
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where  is the transient time of the compensated 
process. Hence, the controller R has the continuous 
transfer function 
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or the discrete transfer function 
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where  and  (T - sample time). The 
gain  has the standard value 1. Increasing/decreasing 

, the control output becomes stronger/weaker. 
According to (23), the controller equation in the time 
domain is as follows 
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6. APPLICATION 

Consider the multivariable process without dead time 
proposed by Menani and Koivo (1996), but completed 
here with dead times on all channels: 
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From the process response to step input change (fig. 3 
and fig. 4), we get the process parameters: 
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     T , T ,  , .   4.111=t 36.121=t 36.112 =tT 322 =tT

          
              Fig. 3. Process response to u   )(11 t=

          
                  Fig. 4. Process response to   )(12 tu =

A. First type decoupler 

From (8)… (11) and (26), we obtain the decoupler  
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The decoupling performance is shown in fig. 5 and fig. 
6. Notice that it is not necessary to adjust the time 
constant T  or T .  12 21

         
         Fig. 5. Decoupled process response to u   )(11 t=

            
         Fig. 6. Decoupled process response to   )(12 tu =

In order to compensate the direct channels of the 
decoupled process, we chose the filter time constants 

, . By using the filter 

gains  and , the unit step responses of 

the both direct input-output channels of the decoupled 
and compensated process remain monotonous, but faster 
(fig. 7 and fig. 8). From these responses, we get the 
parameters of the direct channels of compensated 
process: 

4.010/11 tf TT
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According to (20) and (21), we build the suitable models 
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The control result for  (obtained in Matlab-
Simulink) is presented in fig. 9 and fig. 10. 
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          Fig. 7. Compensated process response to   )(11 tc =

           
         Fig. 8. Compensated process response to  )(12 tc =

 



     
             Fig. 9. Controlled process response to  )(11 tr =

      
             Fig. 10. Controlled process response to  )(12 tr =

B. Second type decoupler 

From (8), (9), (11), (16) and (26), we obtain the 
decoupler  
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The decoupling performance does not require adjusting 
the time constants T  or T  (fig. 11 and fig. 
12). 

4.011= 01.022 =

        
       Fig. 11. Decoupled process response to u   )(11 t=

By using 
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          Fig. 12. Decoupled process response to u   )(12 t=

we get the compensated process responses from fig. 13 
and fig. 14, which are also monotonous. These responses 
yield  
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The control performance (for ) is little better than 
the performance obtained by means of first type 
decoupler (fig. 15 and fig. 16).  
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     Fig. 13. Compensated process response to  )(11 tc =

          
       Fig. 14. Compensated process response to  )(12 tc =

  



      
       Fig. 15. Controlled process response to  )(11 tr =

     
        Fig. 16. Controlled process response to  )(12 tr =

7. CONCLUSIONS 

This paper presents a practical method of 
experimentally decoupling, compensating and control 
for two input-two output process. The proposed control 
method can be implemented in four steps: 1) 
multivariable process decoupling; 2) decoupled process 
compensating, in order to obtain an overdamped 
(nonoscillatory) compensated process; 3) use of a 
second-order plus dead time model, with the same lag 
time constants for each direct channel of the 
compensated process; 4) controller design for each 
compensated process channel by standard IMC method.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

We propose two practical decoupler type. The first 
decoupler has eight parameters: two gains, four lag time 
constants and two dead times, while the second 
decoupler has six parameters: two gains, two time 
constants and two dead times. Moreover, the second 
decoupler is simpler and faster than the first. 
To accomplish decoupled process control, we used                 
Cirtoaje-IMC method, based on decoupled process 
compensation and use of the standard variant of internal 
model control for the decoupled process. The simulation 
results have proven that the proposed control procedure 
is simple, practical and robust.  
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