
Designing the Architecture of a Rendering Engine

�����������
����
�

*University of Craiova, Faculty of Automation, Computers and Electronics,
Romania (e-mail:tansie_razvan@software.ucv.ro).

Abstract: Sometimes developers do not consider feasible the purchase of a pre-made rendering
engine for creating a computer game so they prefer to create their own engine. Moreover, if the
engine might be used for several games or applications that may run on different operating
systems, it is desirable to be reusable and to have platform-independent functionality. This paper
focuses on presenting the theoretical aspects involved by the construction of a portable and
reusable rendering engine and on how they can be applied to design the architecture of the system.
Although the author only intends to offer an overview of the subject, a prototype for a rendering
engine is used for exemplification purposes. It has been implemented using the C++ programming
language and the OpenGL API (Application Programming Interface), which confirm the claims of
portability.
Keywords: Computer graphics, Real-time rendering, Rendering engine, OpenGL.�

�

1. INTRODUCTION

Rendering is used in the area of computer graphics to
describe the process of drawing three dimensional models
on a two dimensional surface represented by the screen.

A rendering engine is a piece of software which takes as
input meaningful rendering data associated to a group of
objects and “outputs” the corresponding digital image on
the monitor. The information that the engine needs
consists in: objects geometry, camera position, textures,
lighting and shading.

The transformations that must be carried on the initial
objects until they can appear as simple pixels on the
screen involve a considerable amount of processing which
is supported by both CPU and GPU. As a result, one of
the most challenging aspects of creating a rendering
engine is to use as little GPU and CPU resources
(memory, number of operations) as possible without
affecting the quality of the rendered scene. That is, the
viewer must perceive it as a real-world scene.

There are two types of rendering: pre-rendering and real-
time rendering. Pre-rendering refers to a computationally
intensive process that is typically used for movie creation
or digital image processing (Marsh D. et al., 2006) while
real-time rendering is often used for 3D video games
which rely on the use of graphics cards with 3D hardware
accelerators.

In what follows there will be presented the aspects
involved by the creation of a real-time rendering engine.
Thus, Section 2 discusses the graphics rendering pipeline
by presenting an outline of each of its three stages.
Section 3 illustrates the architecture of the proposed
engine which aims at a clear separation between the
pipeline stages by using object oriented design patterns

while Section 4 presents the conclusions of the current
research.

2. THE GRAPHICS RENDERING PIPELINE

The graphics rendering pipeline is considered to be the
core component of real-time graphics because its main
function is to generate a two dimensional image given a
virtual camera, three dimensional objects, light sources,
shading equations, textures and more (Akenine-Moller T.
et al., 2008).

A pipeline consists of several stages (Hennessy et al.,
2012). For example, in a factory that produces integrated
circuits, a single circuit cannot go on for encapsulation in
a plastic casing until all the circuits before it , handled by
the same robot, have been encased.

The three stages of the graphics pipeline are: the
application stage, the geometry stage and the rasterizer
stage.

2.1 The Application Stage

The application stage is entirely executed on the CPU and
its result consists in a set of rendering primitives such as
points, lines and triangles that represents the input for the
next stage.

Unlike other stages, the present one cannot be
decomposed into substages because it relies completely
on a software program. Nevertheless, the performance can
be increased by running it on several processor cores.

The main problems handled at this stage are: collision
detection, texture animation, animations via transforms,
user input handling.

2.2 The Geometry Stage

The Geometry Stage is responsible for most of the per-

60

polygon and per-vertex operations and is divided into the
following functional stages: model and view transform,
vertex shading, projection, clipping and screen mapping.

2.3 The Rasterizer Stage

The Rasterizer Stage computes and sets the colours for
the pixels that cover the objects in a scene. It takes as
input the transformed and projected vertices with their
associated shading data from the previous stage. Its
functional substages are: triangle setup, triangle traversal,
pixel shading and merging.

3. ARCHITECTURE

The prototype has a simple architecture based mostly on
the object oriented design patterns of composition and
inheritance and it implements the model-view-controller
(MVC) concept (Gamma E., 1994). It was also influenced
by the examples given in (Benstead L. et al., 2009) which
helped integrate the OpenGL rendering pipeline.

It must be specified that this is only a draft of a future
engine which aims to demonstrate that it is flexible and
solid enough to serve as a framework for the development
of 3D games.

Fig. 1 illustrates the classes that implement a part of the
functionality of the engine that is, the creation and the
rendering of simple objects that are also affected by light
sources and that can perform simple actions such as:
translation, scaling and rotation (this applies only to the
instances of the DynamicObject class).

Fig. 1. UML class diagram for the main components of
the engine

Next, the main characteristics of each class and how the
rendering process is performed will be briefly described.

3.1 The Engine Class

The Engine Class is responsible with the creation and
destruction of objects, their initialization, their update
based on user input and their display on screen.
Therefore, it plays the role of the controller in the MVC
architecture.

Firstly, in the initialization phase, the OpenGL context is
set up by enabling culling and depth tests (Foley J., 1995).

Culling is a technique used in rendering for optimization
purposes and it consists in eliminating the vertices that are
not visible to the viewer from the group of vertices to be
drawn on screen. There are several techniques used for
culling. That implemented by OpenGL is called “back-
face culling”. By setting the GL_CULL_FACE state for
the OpenGL context, the closed surfaces from the scene
will not have all their polygons drawn but only those that
face the camera. Thus, the number of rendered polygons
decreases to half.

The depth test is associated to a depth buffer which
contains a value for each pixel. This value represents the
distance of each pixel from the eye and it is used to
determine the order of drawing. The pixels with larger
depth-buffer values are overwritten by pixels with smaller
values.

After setting up the rendering context the scenes and their
corresponding objects are created and initialized. There
can also be created one or several cameras that allow the
user switch between scenes or watch the same scene from
different angles.

Handling user commands such as: key pressing, mouse
clicks, mouse movement, wheel rotation and so on is also
one of the most important aspects of an interactive
application. Thus, the Engine class contains methods
(functions) that enable: switching between cameras and
scenes (the class contains the indices of the current active
camera and scene objects), camera rotation (around OY
and OX) and camera translation.

If the framework is used for creating a 3D game, the class
can be easily extended to keep one or more references to
the player(s) and to implement the needed functions for
controlling player physics.

3.2 The Camera Class

A camera in a virtual 3D world is actually the point and
angle from which the user perceives the rest of the
objects. As a result, the controller only needs to have
access to the position of the camera, a 3D vector, and to
its three angles of rotation: yaw (rotation around OY),
pitch (rotation around OX) and roll (rotation around OZ).

Moving or rotating a camera object is one of the most
interesting aspects in rendering because they actually
involve the translation and rotation of all the objects in the
scene in the opposite direction. For instance, if one wants
to rotate the camera 30 degrees to the left, all the objects
are rotated 30 degrees to the right. Also, if it should be
moved 22 units forward, all the objects will move 22 units
backward. This is necessary because rotation, translation
and scaling are implemented via transformation matrices
applied on the vertices of an object. Since the camera is
not a physical object to be perceived but it affects the way
the others are perceived, it only modifies those matrices
used for rendering a scene.

61

Fig. 2. The angles for general rotation

Rotation around OZ is rarely used. As a result, the roll
angle was neglected which implies that the position of the
camera is determined based on the other two angles. For a
camera that moves in the XOZ plane the following
equations determine its position based on the varying yaw
and pitch values:

� �
� �)sin(,0,)cos(

)cos()cos(),sin(),cos()sin(
1

yawyawr
pitchyawpitchpitchyawf

rdxfdzpp tt

�
����

������

�

�

����

(1)

Where:

tp�
tp� = current position of the camera

1�tp� = next position of the camera

f
�

= front vector

r� = right vector
dx = translation on OX
dz = translation on OZ

The dx, dz, yaw and pitch values are set according to user
input.

3.3 The Scene Class

The Scene Class contains an array of light objects, an
array of static objects, instances of the class Object, and
another array of dynamic objects, instances of the
DynamicObject class. The difference between these two
object types is that the latter can change position and
orientation based on some speed variables whose values
may change in time.

The class also keeps a reference to the view frustum
which is no more than a collection of six planes that
define the view volume. This variable is used in order to
introduce another culling technique known as “frustum
culling”. Thus, before going on to the geometry phase, all

the objects in the scene are firstly checked to be partially
or totally inside the view volume. If they are exclusively
outside, then they will not appear on screen so it is not
feasible to apply all the vertex and pixel transformations
on them.

This verification is performed using only CPU resources
during the application stage and its success depends on
the frustum being updated at each frame in order to be
consistent with the position of the camera.

The Scene class acts as an organizer for all the entities the
user sees or are about to see and it conveys to them the
messages sent by the engine. Thereafter, it represents the
model of the MVC architecture along with its building
components.

3.4 The Light Class

In computer graphics, light can be classified into four
types: ambient (light reflected off many surfaces so that
its source cannot be perceived), diffuse (light from a
certain source that reflects equally in all directions),
specular (comes from a specific source and reflects in
only one direction) and emissive (which is emitted by an
object).

When combined, all these types result in different light
effects depending on how more powerful is one type from
another. The translation to computer language means that
the data encapsulated by the Light class consists in: the
position of the light in the rendered world and the colours
of its ambient, specular and diffuse components. The
emissive component is more related to materials than to
light sources so it has been neglected.

The lighting model of the engine is the one proposed in
(Benstead L. et all , 2009) . Here GLSL shaders are used
to compute the colour of each vertex based on its initial
colour and the light sources that act on it. Then, the vertex
colours are interpolated across the surfaces of the
polygons to create realism.

A light is also supposed to illuminate objects less
intensely if they are farther from the source so the Light
class also contains variables (C-constant attenuation, L-
linear attenuation, Q-quadratic attenuation) that serve to
creating this attenuation effect by multiplying the diffuse,
specular, and source-specific ambient light colours to the
attenuation factor. The latter is obtained from the relation:

2

1
dQdLC ����

 (2)

where d represents the distance of the vertex from the
source of light.

All the data encapsulated by this class along with the
information from the Object class related to the material
properties and vertices positions and colours form the
input for the vertex shaders used by OpenGL.

3.5 The Object and the DynamicObject Classes

As previously specified, the DynamicObject class only
adds new members to the Object class for quantifying the

62

rotation or the translation speed of one of its instances.
Therefore, only the properties and behaviour of the base
class will be described into more detail.

The Object class is one of the most complex structures as
illustrated in Fig. 3 because it encapsulates all the
necessary data for rendering, i.e.: position of the entity,
yaw, pitch and roll angles, radius of the bounding sphere
used for culling, vertex, index, texture coordinates and
normals buffers and arrays used by OpenGL, a reference
to the current shader and another reference to the current
skin of the object.

Fig. 3. UML class diagram for the Object class and its
members

The class has been designed such as the shader and the
texture (or skin) of an object can be changed at runtime
based on the conditions of the game. The Texture class
provides the access means to the .tga file that stores the
image which will be mapped on an object based on its
texture coordinates. The Material class contains the
properties of the texture that describe how a light beam is
reflected. These properties are: diffuse colour, ambient
colour, specular colour, emissive colour and shininess.

Taking into consideration all the above information, the
evolution of the rendering process for an object can be
presented.

Firstly, the shader is enabled. Different objects may use
different shaders so it must be ensured that OpenGL uses
to correct shader each time. The same operation is
performed for textures but in this case the literature uses
the term “bind” to specify to OpenGL what texture it
should use otherwise it will use the last one that was
bound.

Next, the OpenGL rendering pipeline receives all the
necessary information for each vertex: position, colour,
texture coordinates, normals and then the identifier of the
index buffer which gives the order in which vertices
should be traversed is specified.

Further on, the vertices undergo several transformations
before rasterization such as: modelview transform,
projection, clipping and viewport transforms whose
output is a set of triangles that fits in the viewport and
hence, that the user will see. These transformations are
performed by the vertex shader, which can also compute

an intermediary colour of a vertex based on its initial
colour, material properties and light sources.

The last stage, the rasterization stage, is performed with
the help of the pixel shader which computes the final
colour of each pixel based on texture coordinates and on
the previous colour value from the vertex shader.

3.6. The Font Class

Any graphics application uses labels for describing
objects and phrases to create a user-friendly experience.
Therefore, a rendering engine must offer the possibility of
displaying text of different fonts, sizes and colours on the
screen.

In order to make this possible, the Font class has been
created (Fig. 4) and it uses a texture of Targa format (.tga)
to select the type of the font. Other significant attributes
of the class are the size, a real number, the colour, a
composite data type consisting of four real numbers for
the red, green, blue and alpha components and a shader
program which is the same for all fonts since there are no
differences in their rendering process.

Fig. 4. UML class diagram for the Font class

Because the Engine class is the controller for this
architecture and because, generally, texts appear on screen
based on user input, it is the one that keeps a reference to
the Font object in use.

To create such an object, the programmer only needs to
specify the type of the font which is equivalent to the
name of the .tga file, the size, the colour and the width
and height of the viewport. The last two parameters are
necessary to set the orthographic projection during font
rendering thus making the texts appear two-dimensional.

To use a Font instance, the programmer must follow two
rules: call the drawing routine for a certain text string and
for its corresponding x and y coordinates after all the
other objects in the scene have been rendered and reset
the width and height used by the orthographic projection
each time the window is resized. The first rule ensures
that the text is actually visible because if it were rendered
before everything else, then the objects in the scene would
cover it. The second rule preserves the ratio between text
size, objects size and window size as the window
becomes larger or smaller.

The rendering process is similar to the one for objects the
difference consisting in the fact that, for each letter in the

63

string, there must be computed eight texture coordinates
which correspond to the four vertices of the quadrilateral
that contains the letter.

4. CONCLUSIONS

In this paper, the author has tried to illustrate how a
rendering engine works and which are the theoretical
aspects involved. For exemplification, it has been used a
prototype developed using the C++ programming
language and the OpenGL API which ensures a higher
degree of portability on different platforms (Windows,
Linux, Mac OS and even on mobile using OpenGL ES).

The aims for future work consist in extending the engine
to support a solid animations system using 3D models
exported from a modelling application and to provide
implementations for several effects such as fog, smoke,
water. Also incorporating optimization techniques to
improve performance would be a great step forward,
frustum culling being only the first one.

ACKNOWLEDGMENT

This work was supported by the strategic grant
POSDRU/89/1.5/S/61968, Project ID61968 (2009), co-
financed by the European Social Fund within the Sectorial

Operational Program Human Resources Development
2007-2013.

REFERENCES

Akenine-Moller, T., Haines, E. and Hoffman, N. (2008).
Real-time rendering. A K Peters, Wellesley,
Massachusetts.

Benstead, L., Astle, D., and Hawkins, K. (2009).
Beginning OpenGL game programming (second
edition). Course Technology, a part of Cengage
Learning, Boston, Massachusetts.

Marsh, D., Ricard, D., White, S., and Xu, J. (2006).
Performing a pre-rendering pass in digital image
processing. Patent Application Publication.

Hennessy, J. and Patterson, D. (2012). Computer
architecture – a quantitative approach. 5th Edition.
Morgan Kaufmann. Waltham. Massachusetts.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J.
(1994). Design patterns: elements of reusable object-
oriented software. Addison-Wesley Professional
Computing Series.

Foley, J., van Dam, A., Feiner, S., and Hughes, J. (1995).
Computer Graphics: Principles and Practice in C. 2nd

Edition. The Systems Programming Series.

64

