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Abstract: This work deals with a Bond Graph approach used to design sliding mode observers. 
The method is an extension of the Bond Graph technique designed for classical Luenberger 
observers. Two kind of sliding mode observers are analysed and designed by using the Bond 
Graph approach: the equivalent control method based sliding mode observers and the so-called 
modified Utkin observers.  
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1. INTRODUCTION 

Bond Graph method was introduced by Paynter, and 
further developed by Rosenberg & Karnopp, 1974, and 
Thoma, 1975. Over the last four decades there have been 
a lot of publications regarding the theory and application 
of Bond Graphs in different engineering domains 
(Gawthrop & Smith, 1996, Dauphin-Tanguy, 2000, 
Thoma & Ould Bouamama, 2000). The advantages of 
Bond Graph modelling are the following: offers a unified 
approach for all types of systems; allows to display the 
exchange of power in a system by its graphical 
representation; due to causality assignment it gives the 
possibility of localization of the state variables and 
achieving the mathematical model in terms of state space 
equations in an easier way than using classical methods; 
provides information regarding the structural properties of 
the system, in terms of controllability and observability. 
The Bond Graph approach is a powerful tool for 
modelling, analysis and design of different kind of 
systems, such as electrical (Mukherjee et al., 2007), 
mechanical, hydraulic (Dauphin-Tanguy, 2000), thermal 
(Thoma & Ould Bouamama, 2000), chemical (Thoma & 
Ould Bouamama, 2000, Heny et al., 2000, Couenne et al., 
2006), etc. This method provides a uniform manner to 
describe the dynamical behaviour for all types of physical 
systems and illustrates the exchange power in a system, 
which is normally the product between the effort and flow 
variables in the true Bond Graph. Besides this 
representation there is another one, in which the product 
effort-flow does not have the physical dimension of 
power, called pseudo Bond Graph, which is more suitable 
for chemical and biochemical systems (Heny et al., 2000, 
Couenne et al., 2006).  

One of the most significant problems related to 
application of advanced control strategies in some key 
fields such as chemical and biochemical industry, robotics 
and aerospace, etc., remains the proper modelling of the 
processes. More precisely, it is necessary to obtain useful 

models for control purposes, taking in account the 
specificity of these processes. Numeorus problems arise 
from the absence of cheap and reliable instrumentation (in 
biotechnology, for example), and from the uncertainty 
concerning the structure and/or the parameters of the 
process model.  

In theory, many of the control strategies suppose that the 
state variables are available; this fact is not always true in 
practice, so the state vector must be estimated for use in 
the control laws. In the past, several types of observers 
have been designed for the reconstruction of state 
variables: Kalman filter (Kalman, 1976), adaptive 
observers (Gevers & Bastin, 1986), high gain observers 
(Gauthier et al., 1992, Selişteanu et al., 2009), sliding 
mode observers (SMO) (Utkin, 1992, Walcott & Zak, 
1986, Edwards & Spurgeon, 1994, Barbu & Caraman, 
2007) and so on - see (Thein & Misawa, 1995) for some 
comparisons. Depending upon the particular application, 
all these observers can be used with suitable results. 
Sliding mode observers differ from more traditional 
observers in that there is a non-linear discontinuous term 
injected into the observer depending on the output 
estimation error. These observers are known to be much 
more robust than Luenberger observers, as the 
discontinuous term enables the observer to reject 
disturbances (Tan & Edwards, 2000). The observers 
based on the variable structure systems theory and sliding 
mode concept can be classified in two categories (Xiong 
& Saif, 2000): the equivalent control based methods and 
sliding mode observers based on the method of 
Lyapunov. The analysis of these two types of SMO 
(Edwards & Spurgeon, 1994, Xiong & Saif, 2000) shows 
that there exist some differences in terms of robustness 
properties.  

From practical point of view, the selection of the switched 
gain for the equivalent control based SMO is difficult (in 
order to obtain a sliding mode without excessive 
chattering) (Edwards & Spurgeon, 1994). Also, there 
exists bounded estimation error for bounded modelling 
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errors (the estimation will not be accurate when 
uncertainties are presented) (Xiong & Saif, 2000). The 
Lyapunov based SMO (the so-called Walcott-Zak 
observer) provides exact estimation for certain class of 
nonlinear systems under existence of certain class of 
uncertainties. However, the difficulty in finding the 
design and gain matrices is the main drawback of this 
observer. Consider the effect of adding a negative output 
feedback term to each equation of the Utkin observer. 
This results in a new error system (Şendrescu et al., 
2007). The addition of a Luenberger type gain matrix, 
feeding back the output error, yields the potential to 
provide robustness against certain classes of uncertainty.  

Bond Graph approaches for building observers were 
developed in some works, such as: the first Bond Graph 
architecture of classical Luenberger observers (Karnopp, 
1979), Bond Graphs for reduced order Luenberger 
observers (Pichardo-Almarza et al., 2003), for high-gain 
observers (Pichardo-Almarza et al., 2005a), for nonlinear 
observers applied to electrical transformers (Gonzalez-A 
& Nuñez, 2009), and for proportional-integral observers 
(Pichardo-Almarza et al., 2005b). In this last work, 
several observers are designed by using the Bond Graph 
method; moreover, the gain matrices are calculated from 
the Bond Graph of the observers. The method is applied 
to a continuous stirred tank chemical reactor. 

The objective of this work is to design two kind of SMO 
by using the Bond Graph approach: the equivalent control 
method based SMO and the so-called modified Utkin 
SMO. Furthermore, the gain matrices of SMOs are 
obtained through a Bond Graph approach based on a pole 
placement technique.  

2. FUNDAMENTS OF SLIDING MODE OBSERVERS 

The sliding mode control algorithms are often used in 
process control (electrical systems, robotics, chemical 
processes) and in the last years in the control of 
bioprocesses (Selişteanu et al., 2007, Barbu & Caraman, 
2007, Tokat, 2009, Kravaris, 2010). In this frame, an 
interesting approach is related to the design of SMOs for 
bioprocesses (Barbu & Caraman, 2007, Rahman et al., 
2010). The SMOs are much more robust than Luenberger 
observers, as the discontinuous term enables the observer 
to reject disturbances (Tan & Edwards, 2000, Şendrescu 
et al., 2007).   

Observers based on sliding mode approach first were 
developed for linear systems (Jalili et al., 1997). Consider 
the following linear time-invariant system: 
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The classical observer problem to be considered is that of 
reconstructing the state variables using only measured 

output information. Without loss of generality we assume 
that rank C = p. It is also assume that the pair {C, A} is 
observable and matrices A, B, C are known. In this case, 
the observed vector y may be represented as: 
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Using the following linear transformation of state 
variable: 
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the system (1) can be written in the form: 
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The corresponding sliding mode observer proposed by 
Utkin is given by: 
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where )ˆ,ˆ( yxa  are the estimates for ),( yxa , ppnL ��� )(  
is a constant nonsingular feedback gain matrix, sgn is the 
signum function, and M is a strictly positive gain. If one 
define yyy �� ˆ�   and aaa xx �� ˆ�  then the following 
error system is obtained 

 
�
�
�

���
���

)sgn(
)sgn(

2221

1211

yyay

yyaa

MAA
LMAA

����
����

�

�
 (6) 

Defining the following change of coordinates: 
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then the error system with respect to these new 
coordinates can be written as: 

 yaa AA ��� 1211
~~~~ ���  (8) 
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where: 
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It can be shown that for large enough M > 0, a sliding 
mode motion can be induced on the output error state in 
(9). It follows that, after some finite time 0�y�  and 

0�y�� . Equation (8) then reduces to 

 aa A �� ~~~
11��   (11) 
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which by choice of L represents a stable system and so 
0~ �a�  as ��t . Consequently aa xx �ˆ  and the 

remaining states can be constructed in the original 
coordinate system as 

 )ˆ(ˆ 1
aabb xCyCx �� �  (12) 

The major practical difficulty in the above presented 
approach is the selection of an appropriate gain M to 
induce a sliding motion in finite time (Edwards & 
Spurgeon, 1994). Consider now the effect of adding a 
negative output error feedback term to each equation of 
the Utkin observer (5) (Xiong & Saif, 2000). This results 
in a new observer described by: 
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and in a new error system governed by: 
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By selecting 121
~AG �  and  sAAG 22222

~
��  where sA22  is 

any stable design matrix of appropriate dimension, then 
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In this form the (nominal) error system is asymptotically 
stable for )sgn( yM �  because the poles of the combined 

system are given by )()~( 2211
sAA ��   and so lie in the 

open left half complex plane. The two gain matrices 1G  
and 2G  yields the potential to provide robustness against 
certain classes of uncertainty. 

3. THE BOND GRAPH IMPLEMENTATION 

In order to use the Bond Graph approach for the 
construction of sliding mode observers, first the structural 
observability of the model must to be verified (Pichardo-
Almarza et al., 2005b). The next property, proposed by 
(Sueur & Dauphin-Tanguy, 1991) can be used: 

Property 1. A Bond Graph model is structurally 
observable, if the next two conditions are satisfied: 

(i) There exists at least a causal path linking each I and C-
element in integral causality and a sensor De or Df in the 
Bond Graph in preferred integral causality. 

(ii) All the I and C-elements in integral causality in the 
Bond Graph in preferred integral causality accept a 
derivative causality when a preferred derivative causality 
is assigned on the bond graph model. If it is not satisfied 
directly, a dualisation of some De or Df has to be 
performed in order to transform the remaining integral 
causalities. 

The Bond Graph technique for constructing the SMOs is 
in fact an extension of the method for building 
Luenberger observers (Pichardo-Almarza et al., 2003, 
Pichardo-Almarza et al., 2005b).  

First, the Bond Graph model of the sliding mode observer 
(5) will be implemented. When the state variable from (5) 
is associated with a C element, a modulated flow source 
will be used. Otherwise, if the state variable is associated 
with an I-element, a modulated effort source is used. In 
fact, these modulated flow or effort sources are used to 
introduce the output injection of the observer. Because the 
observer (5) consists of two differential equations, in the 
terms of Bond Graph approach we have: 
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where CI qp ,  are the generalised momentum and 
displacements, and CI fe ,  are the effort and flow 
variables of the inertial and capacitive elements for both 
state variables of the observer ( ax̂  and ŷ ). 

Then, the Bond Graph models of the observer (16), (17) 
are obtained by using the structures presented in Figs. 1-2 
for modulated flow sources and in Figs. 3-4 for modulated 
effort sources. 
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Fig. 1. Output injection in SMO – C element (first 
equation). 
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Fig. 2. Output injection in SMO – C element (second 
equation). 
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Fig. 3. Output injection in SMO – I element (first 
equation). 
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Fig. 4. Output injection in SMO – I element (second 
equation). 
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Fig. 5. Output injection in modified SMO – C element 
(first equation). 

 

C 

MSf 

sign 

K 
M 

0 

MSf K 
G2 

y��  

 
Fig. 6. Output injection in modified SMO – C element 
(second equation). 

In a similar way, the Bond Graph model of the modified 
Utkin sliding mode observer (13) can be implemented. 
When the state variable from (13) is associated with a C 
element, a modulated flow source will be used; otherwise, 
for an I-element, a modulated effort source is used. In this 
case, a supplementary negative output error feedback is 
introduced in both equations of the modified Utkin SMO: 
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Fig. 7. Output injection in modified SMO – I element 
(first equation). 
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Fig. 8. Output injection in modified SMO – I element 
(second equation). 

with  

 ! "TCI qpy ˆˆˆ � , ! "TCI fey ˆˆˆ ��  (19) 

Then, the Bond Graph models of the modified SMO (18), 
(19) are obtained by using the structures presented in 
Figs. 5-6 for modulated flow sources and in Figs. 7-8 for 
modulated effort sources. 

4. COMPUTATION OF THE SMO GAINS 

The full design of SMOs necessitates the calculus of some 
gains. In the case of the first SMO, the constant 
nonsingular feedback gain matrix L and the strictly 
positive gain M must to be chosen. Also, for the modified 
Utkin SMO it is necessary to find L, M and the injection 
matrices 1G  and 2G . The computation of these gains can 
be done by using the classical pole placement technique. 

For the SMO described by the equations (5), it can be 
shown that for large enough 0#M , a sliding mode 
motion can be induced on the output error state. The 
appropriate choice of L leads to a stable error system. In 
fact, it is necessary to choose the matrix L such as the 
matrix 11

~A  of the error system (11) to be Hurwitz. The 
choice of the coefficients of the characteristic polynomial 
of the matrix 11

~A  
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must be done such that eigenvalues 1,0, ��� pnii%  to 
be in the open left half complex plane. 

In a similar way, for the modified Utkin observer (13), the 
matrix L must be chosen such that the eigenvalues of (20) 
to be in the open left half complex plane. Moreover, in 
this case sA22  is chosen as a predefined stable design 
matrix, with the characteristic polynomial: 
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with L and sA22  fixed the calculation of 1G  and 2G  is 
straightforward: 
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As a conclusion, the computation of all these gains can be 
possible by the calculation of the coefficients of some 
characteristic polynomials. This can be done in the Bond 
Graph models, considering the information signals 
associated with the components of gain matrices (the BG 
structures depicted in Figs. 1-8). In fact the coefficients 

1,0, ��� pnii$  and 1,0, �� pjj'  are chosen such 
that the SMOs to have an appropriate stable behaviour. 

Next, the pole placement method proposed by (Rahmani 
et al., 1994) and used also by (Pichardo-Almarza et al., 
2005b) will be implemented in order to calculate the 
coefficients of the characteristic polynomial of a matrix 
directly from the Bond Graph model. 

Definition 1. (Pichardo-Almarza et al., 2005b). A causal 
cycle in a bond graph model is a closed path between 
several dynamical elements (I, C). 

Definition 2. (Pichardo-Almarza et al., 2005b). If a causal 
cycle contains k different dynamical elements (in integral 
causality), then the order of the causal cycle is equal to k. 

A causal loop is defined as a closed path between two 
elements (I, C, R). Thus, according to Definitions 1 and 2, 
a causal loop (including at least a dynamical element) 
may be equal to a first-order causal cycle or a second-
order causal cycle. 

Definition 3. (Pichardo-Almarza et al., 2005b). A kth-
order family of causal cycles is a set of different kth -order 
causal cycles. 

Theorem 1. (Pichardo-Almarza et al., 2005b). The value 
of each coefficient i(  of the characteristic polynomial 

)(%& A  of a matrix A  is equal to the total gain of the ith-
order families of causal cycles in the bond graph model: 
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The gain of each involved family of causal cycles must be 
multiplied by (-1)d if the family is constituted by d
disjoint causal cycles. 

The sliding mode observers design procedure requires the 
following steps: 

(i) For the sliding mode observer of the type (5): 

- Checking the structural observability of the Bond Graph 
model; 

- Building the full Bond Graph model of the sliding mode 
observer by adding the Bond Graph structures from 
Figures 1-2 (for C-elements) or from Figures 3-4 (for I-
elements); 

- Choice of the strictly positive gain M; 

- Computation of the observer gain matrix L by using the 
full Bond Graph model of the SMO previous obtained and 
by applying the Theorem 1. 

(ii) For the modified sliding mode observer of the type 
(13): 

- Checking the structural observability of the Bond Graph 
model; 

- Building the full Bond Graph model of the modified 
SMO by adding the Bond Graph structures from Figs. 5-6 
(for C-elements) or from Figs. 7-8 (for I-elements); 

- Choice of the strictly positive gain M and of the stable 
matrix sA22 ; 

- Computation of the observer gain matrix L by using the 
full Bond Graph model of the modified SMO (previous) 
obtained and by applying the Theorem 1; 

- Calculation of the matrices 1G  and 2G  by using (22) 
and (23). 

5. CONCLUSION 

In this paper, a Bond Graph approach was proposed to 
design sliding mode observers. Two kind of sliding mode 
observers were designed: the equivalent control method 
based sliding mode observers and the so-called modified 
Utkin observers. The Bond Graphs of the SMOs were 
obtained and the observers’ gains were computed by 
using a systematic procedure. In following researches, 
these observers will be applied to processes from 
chemical and biochemical industry. Another future 
challenge consists of the design of nonlinear SMOs via 
Bond Graph approach.   
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