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Abstract: This paper is a part of a complex study for automatic detection of medical image 

diagnostic. Thus, a method based on Gaussian statistical model is developed for medical image 

segmentation. Due to its computation complexity, we used also a method for the Gaussian model 

simplification using the hierarchical clustering. At the end of this process, an image is represented 

as a mixture of Gaussian components. The experiments were realized on a medical database, 

which contains images obtained through different medical proceedings: endoscopy, radiology, 

magnetic resonance imaging, etc. 
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1. INTRODUCTION 

The success of methods for medical image analysis 

depends on the quality of segmentation process. The 

image segmentation represents the partitioning process of 

the image space in homogenous non-overlapping regions.  

So, the objective of the current work is to improve the 

performance of existing approaches in the diagnostication 

of medical images. In this paper, the first step of this 

complex study,  which means the representation the 

medical images as a collection of Gaussian mixture 

components, is realized. We use the Gaussian mixture 

model, because is widely used in the unsupervised pixels 

classification of an image, due to its capability of 

resolving the uncertainty of the mixed pixels. 

Thus, a lot of researches were developed to investigate 

automated techniques for extracting the low-level features 

that could generate semantic descriptions of the medical 

image content. Among these techniques are the methods 

based on machine learning that manually annotate the test 

image datasets.  Algorithms that recognize specific organs 

with different structures of the medical images are studied 

in (Hong et al., 2006). FIRE (Deselaers et al., 2004) 

application and IRMA (Lehmann et al., 2004) use with 

good results the sub-symbolic processing of images. 

Though, the actual methodologies of medical image 

analysis are not generically sufficient for interpreting 

different diseases.  

The medical applications with automatic diagnosis 

capacity imply unique challenges, but at the same time 

new opportunities. In some way we understand an image 

from nature and in another way a medical image, if we are 

not physicians. On the other hand, there are a lot of 

formal representations of the medical knowledge that 

could be exploited to realize the automation of the 

medical diagnosis in any medical domain. 

2. IMAGE REPRESENTATION 

2.1 Color feature 

Color is a very important feature in many image domains 

and is the most used feature in the content- based image 

retrieval systems, because the color characteristic is easy 

to be detected from images and objects. More, the color is 

invariant to orientation and scaling and the analysis by 

color is intuitive. The performance and efficiency of the 

color feature for characterizing the perceptual similitude 

of the color is strongly influenced by the selection of the 

color space and its quantization. 

The HSV color space offers an intuitive representation of 

color and approximates the way in which humans 

visualize and manipulate color. The transformation from 

RGB to HSV color space is nonlinear, but irreversible 

(Smith et al., 1996) and is realized by (1), (2), (3). 

Let be vc = (r,g,b) a pixel in RGB colour space and  wc = 

(h,s,v) a pixel in HSV color space. Then: 
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Then the hue is: 

        h=5+b' then r = max(r,g,b) and g = min(r,b,g) 

       h=1-g' then r = max(r,g,b) and g   min(r,b,g) 

  h=1+r' then g = max(r,g,b) and b = min(r,b,g)       (3) 

     h=3-b' then g = max(r,g,b) and b   min(r,b,g) 

    h=3+g' then b = max(r,g,b) and  r = min(r,b,g) 



 

 

     

 

    h=5-r' otherwise. 

2.2 Texture feature 

The texture is another important characteristic taken into 

consideration for classifying and recognizing the sick 

regions of medical images. The frequency elements are 

very important characteristics for texture analysis. The 

local frequency of the image regions can be analysed by 

Fourier transform that offers a frequency/space 

representation of the image (Zhang et al., 2000). 

So, the bi-dimensional image p(x,y) is multiplied by the 

window function q(x,y), followed by the Fourier 

transform as in (4): 
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where u, v are the horizontal and vertical frequencies, and 

(x0, y0) is the image location where the frequency is 

computed. 

The Gabor filter (Zhang et al., 2000) is of form as in (5), 

(6): 
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with the center frequency 2

0

2

0
vuf   and with the 

rotation coordinates: 

)ycosxsin,ysin(xcos)y' ,(x'    

After the multiplication of the Fourier transform of the 

image P(u, v) and of the Gabor filter Mf,(u, v) (Zhang et 

al., 2000), the inverse Fast Fourier Transform is applied 

as in (7). 
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The texture characteristics are computed by adding the 

quadratic filter outputs over all the spatial coordinates x 

and y, as in (8): 
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We interpret the hue and saturation channels like polar 

coordinates to allow the direct use of the HSV color space 

for Fourier transform (Palm et al., 2000). This technique 

is used for the extraction of the Gabor characteristics for 

color texture.  

The color space HSV is a non-linear transformation of the 

RGB color space. The H, S, V components closely 

correspond to the human color perceptions. Starting from 

the representation of the HSV color space, we may 

represent the color in complex.  

The affix of any point from the cone base can be 

computed as: z
M = S (cosH + i sinH). 

So, the saturation is interpreted as the magnitude and the 

hue as the phase of the complex value b; the value 

channel is not included. The advantages of this 

representation of complex color are the simplicity due to 

the fact that the color is now a scalar and not a vector, and 

the combination between channels is done before 

filtering. 

 So, the color can be represented in complex (Palm et al., 

2000):  
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The computation of Gabor characteristics for the image 

represented in the HS-complex space is similar with the 

one for the unichrome Gabor characteristics, because the 

combination of color channels is done before filtering:    
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The Gabor characteristics vector is created using the value 

f,
C  computed for 3 scales and 4 orientations. 

3. GAUSSIAN MIXTURE MODEL FOR IMAGE 

SEGMENTATION 

3.1 Image segmentation 

To resolve the problem of image segmentation, each 

region is represented as a parameterized distribution, like 

Gauss (continuous) or Poisson (discrete) distribution.  

A Gaussian mixture model is a powerful framework to 

estimate the probability density function of a variable. It 

was widely used in statistic, image and signal processing, 

physic, biology, finance, information extraction 

(Udristoiu et al., 2008), etc.  

The image is modelled as a mixture of Gaussian 

distribution, where an individual distribution is used to 

specify the region of pixels. Thus, the image is modelled 

as “random field” (Greenspan, 2002), being composed 

from two collections of two random variables Y and X.  

The values of the first variable correspond to the 

classes/regions, while the values of the second variables 

correspond to “measurements” or “observations” of the 

pixels. The problem of segmentation consists in 

determining Y, knowing X. A general method for 

statistical segmentation is to represent the probability of 

the density function as a mixture because the data is a 

combination of individual density of the components 

which correspond to regions (Bishop, 2006). 



 

 

     

 

Given the data, the task of image segmentation is to 

identify a set of pixels in it and provide a model for each 

of the pixels. This is realized using the Expectation 

Maximization (EM) algorithm, which is an effective and 

popular technique for estimating the mixture model 

parameters. It iteratively refines an initial cluster model to 

better fit the data and terminates at a solution that is 

locally optimal for the underlying clustering criterion 

(Dempster et al., 1977). 

In our case, the image is represented in the color-texture 

space meaning 3 components for color and 12 

components for texture. For example, we consider an 

image pixel represented as a vector of dimension n, X= 

(x1….xn), 
n

RX  . If we want to attach a pixel x to one of 

the clusters/components z1….zk, we have to determine the 

conditional probability p(z|x).  

In conformity with Bayes theorem (Bishop, 2006), the 

conditional probability is as in (11):  

.
p(x)

p(x|z)p(z)
p(z|x) =                          (11) 

The pixels could be in one of the clusters with the initial 

probabilities: w1=p(z1), w2=p(z2)….wk=p(zk). 

The conditional probability of x, for a given zk is modelled 

by a Gaussian distribution parameterized by two 

parameters 
k

  and kV : 
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In conformity with the product rule (Bishop, 2006), the 

joint probability is as in (13):  

.(z|x)p(x)p(x,z) = p
                      

 (13) 

In conformity with the sum rule (Bishop, 2006), the 

marginal probability is as in (14):  
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Thus, using the sum rule, the mixture density function is: 
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where, k
 is the mean of the Gaussian mixture and kV is 

the covariance matrix of the Gaussian mixture. 

The likelihood function is:  
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The function ),,|( VwXp   has to be maximized using 

the expectation-maximization (EM) algorithm. An 

advantage of expectation-maximization method is that it 

is capable for handling uncertainties due to mixed pixels 

and helps in designing multivalued recognition systems 

(Greenspan et al., 2008; Dempster et al., 1977; Bishop, 

2006). 

In the next steps, the expectation algorithm for the 

Gaussian mixture model is described: 

 the Gaussian mixture model is given 

 the likelihood function is maximized 

Step 1: Initialize the means
k

 ,
 

co-variances 
k

V  and 

evaluate initial value of likelihood function. 

Step 2: E-step - Evaluate the conditional probability of zk 

given xn, )|( nx
k

zp  as in (18): 
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Step 3: M-step-Re-estimate parameters: 
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Step 4: Evaluate the log-likelihood from (20) and check 

for convergence of either the parameters or the log 

likelihood. If the convergence criterion is not satisfied, 

return to step 2: 
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3.2 Kullback-Leibler divergence 

In the GMM-KL framework, the distance measure 

between two images is defined as a distance measure 

between the two Gaussian mixture distributions obtained 

from the images. The matching between images is treated 

as a distribution matching task, using the information-

theoretic motivated Kullback-Leibler (KL) distance 

(Dempster et al., 1977; Greenspan, 2002). Denote the 



 

 

     

 

Gaussian mixture models computed from the two images 

by GMMi and GMMj: 
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If, for instance, GMMi and GMMj are two multivariate 

Gaussian distributions parameterized by their means, i  

and j  and by their covariance matrices, Vi and Vj, the 

equation leads to a closed form expression of the KL 

distance (Greenspan et al., 2008): 
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3.3 Hierarchical Clustering 

Although Gaussian mixture models are used in many 

research domains from image processing to machine 

learning, this statistical mixture modelling is usually 

complex and need to be simplified (Goldberger et al., 

2008; Garcia, 2010). In this paper, we present a GMM 

simplification method based on a hierarchical clustering 

algorithm. This algorithm provides a hierarchical 

representation of the initial Gaussian mixture model and 

experiments on medical image processing are reported. 

Given a set of k Gaussian distribution GMM1…GMMk to 

be reduced and a k*k similarity matrix, the basic process 

of hierarchical cluster (Johnson, 1967) is this:  

1. Start by assigning each Gaussian distribution to a 

cluster, so we now have N clusters, each containing 

just one item. The distances (similarities) between the 

clusters are the same as the distances (similarities) 

between the items they contain. 

2. Find the closest (most similar) pair of clusters and 

merge them into a single cluster, so that now you 

have one cluster less. 

3. Compute distances (similarities) between the new 

cluster and each of the old clusters D(GMMi, GMMj). 

4. Repeat steps 2 and 3 until all items are clustered into 

k cluster. 

Step 3 can be done in different ways, using single-linkage 

or complete-linkage or average-linkage clustering. In 

single-linkage clustering, we consider the distance 

between one cluster and another cluster to be equal to the 

shortest distance from any member of one cluster to any 

member of the other cluster.  In complete-linkage 

clustering (also called the diameter or maximum method), 

we consider the distance between one cluster and another 

cluster to be equal to the greatest distance from any 

member of one cluster to any member of the other cluster. 

In average-linkage clustering, we consider the distance 

between one cluster and another cluster to be equal to the 

average distance from any member of one cluster to any 

member of the other cluster. 

In this paper we use the single-linkage clustering of 

Gaussian distributions. 

3. EXPERIMENTS AND CONCLUSION  
The image collections used in our experiments were taken 

from free repositories on the Internet (Gatrolab, 2010; 

Gastroenterology, 2010; Radiological images, 2010). The 

experiments were carried out on images diagnosed with: 

duodenal ulcer, gastric ulcer, gastric cancer, esophagitis, 

breast cancer, brain tumours, etc. Through our 

experiments, we considered 8 and 4 components for the 

mixture model to observe their results. 

In this section, we present experiments realized on images 

diagnosed with duodenal ulcer, colon cancer, and breast 

cancer. 

The duodenal ulcers can come in different shapes, sizes, 

and textures (Gastroenterology, 2010), increasing the 

complexity to diagnose them. For example, the image 

from Figure 1 shows a single, white-based ulcer. The 

segmentation results on this image can be observed in 

Figure 1. 

  

                                  (a)                            (b) 

 

               (c) 

Fig.1. Results of segmentation on an image diagnosed 

with duodenal ulcer: (a) Original image; (b) Image 

segmented with 8 regions; (c) Image segmented with 4 

regions. 

In the case of images segmented into 8 components, the 

interested regions are observed in Figure 2. There are 4 

extracted regions of interest in different hues.  

   

 



 

 

     

 

  

  Fig.2. Regions of interest extracted from the image 

segmented with 8 components. 

In the case of images segmented into 4 components, the 

interested regions are observed in Figure 3. There are only 

2 extracted regions of interest in different hues, because 

the mixture model was reduced to 4 components.  

  

  Fig.3. Regions of interest extracted from the image 

segmented with 4 components. 

The image from Figure 4 shows an advanced cancer in the 

right colon (Gastroenterology, 2010) and the sick region 

come in different yellow hues. 

The segmentation results on this image can be observed in 

Figure 4.  

  
                                        (a)                               (b) 

 
(c) 

Fig.4. Results of segmentation on an image diagnosed 

with colon cancer: (a) Original image; (b) Image 

segmented with 8 regions; (c) Image segmented with 4 

regions. 

In the case of images segmented into 8 components, the 

interested regions are observed in Figure 5: 

    

Fig.5. Regions of interest extracted from the image 

segmented with 8 components. 

In the case of images segmented into 4 components, the 

interested regions are observed in Figure 6: 

 

Fig.6. Regions of interest extracted from the image 

segmented with 4 components. 

The image from Figure 7 shows a breast cancer 

(Gastroenterology, 2010). 

 

  
(a)                            (b) 

 
(c) 

Fig.7. Results of segmentation on an image diagnosed 

with breast cancer: (a) Original image; (b) Image 

segmented with 8 regions; (c) Image segmented with 4 

regions. 

In the case of images segmented into 8 components, the 

interested regions are observed in Figure 8.  

 

  
  Fig.8. Regions of interest extracted from the image 

segmented with 8 components. 

In the case of images segmented into 4 components, the 

interested regions are observed in Figure 9. 
 



 

 

     

 

 

  Fig.9. Regions of interest extracted from the image 

segmented with 4 components. 

By analysing the results of medical images segmentation 

using the Gaussian mixture model, good results can be 

observed. If the sick region has different hues then the 

model with 8 components is indicated, otherwise the one 

with 4 components can be used. 

In the future work, we intend to develop a framework to 

compare the results of segmentation manually and 

automatically done. 
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