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Abstract: The paper deals with the logic, implementation and testing of original algorithms that 
provide a fast identification of harmonic disturbances when they pollute a monitored signal which 
in stationary state is characterized by periodical medium distortions. Unlike Fourier-based 
techniques, the identification requires for the harmonic identification only a small number of 
samples, corresponding to three quarters from a period of the monitored signal. The algorithms use 
the details vectors corresponding to the first 9 levels from a decomposition tree generated with 3 
different original hybrid wavelet-based algorithms (relying on filters of length 4, 6 and 8). We 
identified the “key-features” of the details vectors and combined them such as to form “harmonic 
fingerprints”, afterward stored in a partitioned matrix (MHF) along with the harmonic orders 
responsible for their generation. Using MHF, 30000 tests considering randomly generated polluting 
harmonics demonstrated that the mean run-time consumed for the harmonic order identification 
was reduced by a factor in the range (3.44...4.54). Percents under 0.15% of “absent fingerprint” 
situations were noticed, the algorithms being provided with intelligent additional execution 
branches to deal with them. The modest additional memory requirements and good run-time related 
performances, along with their relative simple implementation recommend the algorithms as 
valuable tools in real-time applications for power quality monitoring and fault identification. 

Keywords: Search methods, Signal processing algorithms, Fault detection and identification, 
Frequency signal analysis, Harmonics, Wavelet analysis. 

 

1. INTRODUCTION 

Identification of harmonic related disturbances has been 
representing a permanent concern of professionals all 
over the globe, a common approach being the utilization 
of wavelet-based techniques.  

For example, using wavelets, Chan, W.L., So, 
A.T.P. and Lai, L.L. (2000) proved that each type of 
current waveform polluted with power harmonics can be 
represented well by a normalized energy vector. Such 
vectors can be used for harmonics signature recognition,   
the corresponding system performing well in tandem with 
an artificial neural network (NN).  

Similarly, a comparative study was made by Srivastava, 
S., Gupta, J.R.P. and Gupta, M. (2009), relative to neural 
NN-s related training algorithms. The studied NN was 
trained to extract important features from the input current 
waveform to uniquely identify various types of devices 
using their distinct harmonic signatures. The particle 
swarm optimization (PSO), genetic algorithm, gradient 
descent (GD) and respectively a hybrid of PSO&GD were 
analyzed, the last one proving to be superior.    

Remarkable results obtained with a wavelet-genetic 
algorithm-neural network-based hybrid model relative to 
accurate prediction of short-term load forecast were 

communicated by Lai, L.L. and Zhou, L. (2010).   

We have published recently some of the results we have 
obtained in the direction of fast identification of harmonic 
disturbances using wavelet-based techniques  
implemented by means of the dedicated Matlab function 
dwt with the mother function ‘db3’ (Nicolae, I.D. and 
Nicolae M.S. (2011)  , Nicolae, I.D. and Nicolae, P.M. 
(2012a)). The harmonic identification related results were 
impressive, but our most recently studies revealed some 
drawbacks of the Matlab function dwt related to the 
evaluation of power quality indices and fault detection 
(Nicolae, I.D. and Nicolae P.M. (2012b)).  

We have therefore conceived an original class of hybrid 
wavelet-based algorithms characterised by fast 
reconstruction properties, good abilities in fault detection 
and evaluation of power quality indices (Nicolae, I.D., et 
al. (2012 c)). The next step was to reveal the algorithms 
abilities related to the fast identification of harmonic 
disturbances, as described below.  

2.  PRELIMINARY EVALUATIONS 

2.1. Wavelet algorithms 

The  analyzed class of hybrid wavelets algorithms used 
for the determination of approximation/detail vectors 
when performing a Discrete Wavelet Transform (DWT) 



 
 

    

 

decomposition of a signal s with a filter of length l 
(belonging to the set {4,6,8}) can be described by 
(Nicolae, I.D., et al. (2012 c)): 

.)1()1(...)1()(
)1()1(...)1()(

1110

1110

−−+

−−+

⋅−++⋅−+++⋅++⋅=

⋅−++⋅−+++⋅++⋅=

llii

llii

glisglisgisgisd
hlishlishishisa

(1)

where for the first decomposition level the vector s 
contains the signal’s discrete values, a and d denote the 
approximation/detail vectors, obtained when s is 
decomposed using the low-pass filter h=[h0 h1 …hl - 1] 
having the values from Table 1 and a high-pass filter 
g=[g0 g1 …gl - 1],   constructed with  

( ) 1...0,1 1 −=−= −− lihg il
i

i
 (Van Fleet, P. (2009), Percival, 

D. and Walden, A, (2006)). 

Table 1. Coefficients of low pass filters approximated to 2 
decimal places 

Filter 
length h0 h1 h2 h3 h4 h5 h6 h7 

4 0.48 0.84 0.22 -0.12 - - - - 
6 0.33 0.81 0.46 -0.13 -0.08 0.03 - - 
8 0.23 0.71 0.63 -0.03 -0.18 0.03 0.03 -0.01

For stationary waves, we considered that the missing 
values beyond the right edge (n) of the currently analyzed 
data segment are equal to those from the left edge. So: 
s(n+i)=s(i), with i=1…l-2. Beginning with the 2-nd 
decomposition level, the role of s is played by the 
approximations from the previous level. 

2.2. Preliminary evaluations in stationary regime 

 The monitored signal (a current from the supplying 
network - Fig. 1) has distortions and is typical for 
stationary regimes in power systems. The details 
corresponding to the first level of decomposition have 
almost negligible values, with maximum values not 
exceeding 0.5 A . For decomposition levels of higher 
orders the details become more significant, denoting the 
presence of regular distortions of harmonic nature 
(generated by low-order harmonics) in stationary regime,  
      

 

Fig. 1. Signal submitted to preliminary evaluations 

  
Fig. 2. Stationary. Decomposition of  the 6-th level.  

as depicted by Fig.2, where the circles mention the filter’s 
length (Nicolae, I.D et al. (2012 c)). As expected from the 
underlying algorithms and values of filters’ coefficients, 
the maximum and minimum values recorded by details 
within a period if generated by shorter filters are higher in 
absolute values while more local peaks can be noticed 
when longer filters are used (Fig. 3). 

For each filter length and decomposition level, the details’ 
maximum absolute value for the median period (MA1) 
was evaluated in stationary state. Another important 
parameter that must be evaluated in stationary regime is 
the maximum absolute value for all three periods (MA2), 

 
Fig. 3. Stationary. Details for decomposition levels with orders within the range 1...8, generated by all filters (cyan – 
filter of length 4; green – filter of length 6; black – filter of length 8) . 
 



 
 

    

 

always higher than MA1 owing to a moderate “edge 
effect” exhibited by all filters.  

The ratios MA2/MA1 represent the decomposition levels’ 
intrinsic sensitivities to fault detection, because a fault 
occurred near the signal edges affected by the edge effect 
can be shadowed if the details’ deviations do not overcame 
the value of MA2.  

2.3. Decomposition levels’ sensitivities to harmonic pollution 

To test the abilities of all filters relative to detection and 
evaluation of harmonic pollutions, firstly a signal with a 
nature of harmonic pollution was superposed over the 
data segment in stationary regime, containing the samples 
with indexes in the range [l/4...l/2], where l represents the 
length of the currently analyzed segment, as in Fig. 4. 

 
Fig. 4. Monitored signal affected by the harmonic of order 
40 with amplitude 50 and phase difference 0. 
The harmonics amplitude was set to 50A whilst the 
harmonic orders (HO) were varied from 3 to 40. The 
phase difference (Ph), calculated between the sine 
waveform used as harmonic pollution and the polluted 
signal at the moment when pollution started was also 
varied from -π to π with steps of π/6.  

The levels‘ sensitivities were calculated with respect to 
the HO and phase difference respectively. As Ph 
influences the level‘s sensitivity, two waveforms (one 
with all maximum values, the other with all minimum 
values) were represented for each level and filter length. 
The sensitivities on the first 4 levels, increasing with the 
HO in an almost linear manner, were found to be too 
small to provide reliable information on faults, unlike 
those for decomposition levels higher than 5 (Fig. 5) 
(Nicolae, I.D et al. (2012 c)).  

 3.  DETERMINATION OF THE KEY-FEATURES 
FOR THE HARMONIC IDENTIFICATION  

The experience that we gained during our previous 
researches in the area ((Nicolae, I.D. and Nicolae M.S. 
(2011), Nicolae, I.D. and Nicolae, P.M. (2012a)) made us 
start with a study on the differences between two sets of 
vectors (now calculated with our original hybrid wavelet-
based algorithms) (Fig.6): 
- the details affected by the harmonic pollution; 
- the details determined in the stationary regimes. 

Considering the levels sensitivities versus HO-s presented 
in Section 2, the analysis was made only for the levels 
5...9. Figs. 6 and 7 depict partial representations of the 
vectors corresponding to these differences, when the 
pollution was made by signals with HO-s from the 
extreme values of the range of interest (3 and 40 
respectively), but with identical phase differences and 
amplitudes (Ph =0, amplitude 50). 

 Another characteristic (also revealed in the case when 
dwt from Matlab was employed) is the similarity of 
shapes when different harmonic amplitudes were used as 
test data. Fig. 8 depicts results obtained with a filter of 
length 8, polluting HO = 40, Ph of π-π/750. 

 
Fig. 6. Partial representation of the difference between 
details for levels 5...9. Up – filter of length 4 and down - 
filter of length 8. Harmonic pollution with order 3. 

 

 
Fig. 5. Sensitivities at fault versus harmonic order (continuous / dashed line for maximum / minimum values relative to
phase differences varying from –π to π in steps of π/6). 



 
 

    

 

 
Fig. 7. Partial representation of the difference between 
details for levels 8 and 9. Up – filter of length 4 and down 
- filter of length 8. Harmonic pollution with order 40.   

 
Fig. 8. Partial representation of the difference between 
details (harmonically polluted – stationary) for levels 2, 5 
and 8. Smaller values (red) – harmonic amplitude =50, 
higher values (black) - harmonic amplitude = 80.  

As expected, the difference vectors present more 
oscillations for higher HO-s. The amplitudes of harmonics 
do not affect the number of oscillations (NO) and 
therefore, for a certain filter, NO on each level is affected 
by only 2 parameters: the harmonic order and the phase 
difference. These features recommend NO-s as reliable 
candidates for the harmonic pollution identification.  

4. ALGORITHMS USED FOR HARMONIC 
IDENTIFICATION.  

4.1. Data structures 

To generate an appropriate number of “harmonic 
fingerprints”, polluting harmonic signals were generated 
considering an amplitude of 50A , harmonic orders from 3 
to 40 and Ph covering the range [–π...π) with a constant 
step of π/750.  

A harmonic signal generated in this way was overlapped 
over the stationary signal for a discrete interval 
corresponding to the samples from the range 
[l/4...l/2+2048], where l corresponds to 3 periods of the 
stationary signal and consequently a non-stationary signal 
was obtained, as in Fig.9. For the first 9 levels of  

   

 
Fig. 9. Nonstationary signal used to construct the search 
structures, affected by the harmonic no. 40, Ph = 0. 

decomposition, vectors containing the differences (details 
for nonstationary – details for stationary) were calculated, 
generically described as  

diff_level_i=details_nonstationary_level_i- details_stationary_level_i,  

with i=1...9. 

For each HO, the distinct combinations obtained by 
gathering the NO–s corresponding to each diff_level_i 
(i=5...9) (calculated when all phase differences were 
considered), were stored as possible „harmonic 
fingerprints” (HF) in specific data structures (Fig. 10). 

Filter of length 4 
harmonic no. 3 harmonic no. 16 harmonic no. 40 

5 5 5 5 5 
5 5 5 5 6 
4 5 5 5 5 
4 4 5 5 5 
4 4 5 6 5 
4 4 4 5 5 

... 

24 25 25 0 1 
24 25 25 0 7 
24 25 25 0 0 
25 25 25 0 1 
25 25 24 0 2 
25 25 24 0 0 
25 25 24 0 3 

... 

60 37 12 13 0 
61 37 12 13 0 
61 37 12 13 1 
61 37 12 13 2 
61 36 12 13 0 
61 36 13 13 0 
61 37 13 13 0 
61 37 13 12 0 

Filter of length 6 
harmonic no. 3 harmonic no. 16 harmonic no. 40 

... 
4 5 13 5 6 
4 5 13 5 5 
5 5 13 5 5 
5 5 14 5 5 
6 5 14 5 5 
6 6 14 5 5 
6 6 12 5 5 

... 

... 
24 25 25 0 5 
25 25 25 0 5 
25 24 25 0 5 
24 24 25 0 5 
24 24 25 2 5 
24 24 25 6 5 
24 24 25 7 5 

... 

... 

60 37 13 13 0 
60 37 13 11 0 
60 37 13 9 0 

... 
61 37 12 13 2 
61 37 12 13 4 
61 37 12 13 5 
61 37 12 13 3 

... 
Filter of length 8 

harmonic no. 3 harmonic no. 16 harmonic no. 40 
... 

6 6 4 5 5 
6 4 4 5 5 
4 4 4 5 5 
4 4 5 5 5 
5 4 5 5 5 
5 5 5 5 5 

... 

... 
25 24 25 0 3 
25 24 24 0 3 
25 24 25 0 4 
26 24 25 0 4 
24 24 25 0 4 
24 24 25 0 1 

... 

60 37 13 13 1 
60 37 13 13 0 
61 37 13 13 0 

.. 
61 36 12 13 0 
61 37 13 13 1 
61 37 13 13 3 

 

 

Fig. 10. Examples of harmonic fingerprints.  



 
 

    

 

For example when the filter of length 8 was used to 
perform the wavelet decomposition and a harmonic 
polluting signal with the harmonic order 16 was 
overlapped over the stationary signal as described above, 
for certain phase differences 24 oscillations were detected 
in diff_level_5 and in diff_level_6, 25 oscillations were 
detected in diff_level_7 whilst diff_level_7 oscillated only 
once and diff_level_6 had no oscillations (as revealed by 
the bolded HF from Fig. 10).  

For each distinct filter length a specific procedure was 
executed to check for duplicates and it was found that for 
a certain filter, each HF was generated by a single 
harmonic and therefore a certain HF can be used for the 
unambiguous identification of the HO of the polluting 
signal that generated it.  

Fig. 11 presents the number of HF generated by each 
harmonic order when different filter lengths were used. 

 
Fig. 11. Number of harmonic fingerprints versus 
harmonic order, for all filters.  

More HF-s were generated for certain HO - s (e.g. 4, 8, 
16, 32), proving that a small number of duplicates were 
found for them. It means that for these harmonics (we 
should call them “critical frequencies“ CF) the Ph has a 
more significant influence, more individualized patterns 
being obtained in the shape of details .  A previous 
Fourier analysis of the monitored signal in stationary 
regimes revealed that CF-s match to the most significant 
harmonics from its spectrum.  The same set of frequencies 
is responsible for the irregularities noticed in the levels 
sensitivities versus harmonic orders from Fig. 5.  

The next step was to gather for each distinct filter length 
all the HF - s within a single matrix (referred below as 
MHFl, where l can be the filter length), still preserving the 
identification of the harmonic h that generated it by 
means of a dedicated additional column. MHF4 has 441 
rows, MHF6 has 607 rows whilst MHF8 has 385 rows. 

An inspection of the above mentioned matrices reveals 

that the content of their first column can be used for their 
partitioning such as to refine the search and reduce the 
time required to find a specific row.  Considering this, the 
next step was to sort every MHFl in the ascending order of 
the values from its first column. Partitions were afterward 
determined inside every matrix, each of them containing 
all the rows for which the first column has the same 
values.  A similar partitioning technique was used in (Ümit 
V. Çatalyürek  (2008).  

Fig. 12 depicts the first rows from MHF4 . The horizontal 
lines emphasizes the partitions limits, the bolded values 
correspond to the harmonic order which generated the HF 
corresponding to that row and the italicized characters 
represent the values used for the partitioning. 

 

 

 

Fig. 12. Example of rows from  MHF4 . 
 

Fig. 13 depicts the partitions sizes. Obviously smaller 
partition sizes mean smaller retrieval times. For this point 
of view, one expects to obtain the smallest average 
retrieval times relative to the search within partition for 
the filter of length 8, where the partitions sizes cannot 
contain more than 12 rows. This comes to fortunately 
balance somehow the longer times required for the 
determination of a specific harmonic fingerprint, as the 
time consumed for the determination of the detail vectors 
increases with the filter length.  

The angular step considered when the matrices were built 
was small enough such as to provide a „hit ratio” higher 
than 99.9% for the tests described in the following 

 
Fig. 13. Partition sizes. 

4   4   5   5   5   3 
4   4   5   6   5   3 
4   4   4   5   5   3 
4   5   5   5   5   3 
5   5   5   5   5   3 
5   5   5   5   6   3 
6   6   7   6   7   4 
6   6   6   6   7   4 
6   6   6   7   7   4 
6   6   7   7   7   4 
6   6   7   7   6   4 
6   7   7   6   7   4 
6   7   7   7   7   4 
7   7   7   7   7   4 

...... 



 
 

    

 

section. Still, to provide the identification of any possible 
combination of harmonic pollution, a simple method was 
implemented and successfully used. This assumes: 
- the estimation of the harmonic pollution as a difference: 
(stationary signal - nonstationary signal polluted with a 
specific harmonic h ) ; 
- the evaluation of the average number of samples (ANS)  
which correspond to one of its periods.  

The procedure was run for every harmonic order within the 
range of interest [3...40] (Fig. 14) and the obtained ANS –s 
were stored in a dedicated array, with 37 rows, one for each 
harmonic order. As expected, the curve from Fig. 14 
demonstrates a strict decreasing of the number of samples 
corresponding to a period from the polluting signal with the 
increasing of the harmonic order. As during the tests on 
some execution branches some estimated harmonic periods 
did not match exactly the central value determined during 
the “training stage” when the data structures were filled, 
high and low limits were also calculated and stored such as 
to provide larger limits and allow the HO identification. 

 
Fig. 14. Average number of samples per harmonic period. 
 

Tests over 50000 of randomly generated harmonics 
revealed a 71.7% percent of harmonic orders directly 
identified using the central values from Fig. 14.  The 
corresponding mismatching distribution is revealed by 
Fig. 15. Its analysis reveals maximum values not 
exceeding 6-7%. Their correlation to an overall 
mismatching ratio of around 28.3% results into the 
conclusion that no further run-time related improvement 
of the algorithm could be used in this direction.  

4.2. Harmonics identification  

Tests were made considering 2 sets of 30000 polluting 
signals of harmonic nature, randomly generated according 
to the following pattern: 

 
Fig. 15. Percents of ANS – related mismatching versus 
harmonic orders. 

( ) 2/max() Irandamplitude ⋅= ; 
033.0*())1500(*750/ randrandidifferencephase += π ; 

3)_( += axmharmrandih , 
 

where I represents the monitored signal, randi(x) 
generates randomly integer numbers within the range 
[0..x], rand() generates randomly real numbers within the 
range [0,1) and harm_max was set to 37 (to generate 
harmonic orders up to 40, which is the upper limit for 
harmonics under survey according to EU norms).  

Within each test, wavelet decompositions up to the 9-th 
level were performed and the corresponding HF was 
built. Using an “interval halving” technique its first 
component was used to identify the corresponding 
partition from MHl . A linear search (whose performances 
are improved because the rows within a partition follow 
an ascending sorting order with respect to the second 
column (Hitachi Co., 2007)) must be afterward performed 
to locate the harmonic fingerprint. A successful 
localization results into the harmonic order identification, 
as the searched harmonic order is stored in the last 
column from the located row. For cases of type “HF 
absent”, the ANS-s must be used.  

An analysis considering the “HF absent” cases generated on 
a 30000 tests basis for which the maximum harmonic order 
was set to 40 (Fig. 16) revealed a high percent of 
occurrences (50.13%) corresponding to 15040 cases  for the 
filter of length 6. This percent is correlated to the highest 
rum time recorded during its employment and classifies it as 
unusable for this type of harmonic identification algorithm 
(the 23% percent of saved runtime does not justify the 
algorithm’s additional memory requirements and 
implementation-related effort).  

 
Fig. 16. Number of absent HF-s versus harmonic orders. 

On the other hand, insignificant percents of “absent HF”  
were noticed for the other two filters: 0.15% occurrences 
for the filter of length 4 and 0.00017% for that of length 8 
respectively. More details are presented below: 
- 46 cases of “HF absent” for the filter of length 4 (from 
which 93.4% were generated by the 32-nd HO,  0.043% 
were generated by the 6-th HO whilst the remaining 
0.021% were generated by the 16-th HO); 
- 5 cases of “HF absent” for the filter of length 8, for the 
HO–s 4, 6, 8, 16 and 20 respectively.  

Both the per-harmonic distribution of HF-s (Fig. 11) and 
respectively the levels sensitivity diagrams (Fig. 5) could 
have been used to anticipate this behavior, as the above 
mentioned HO-s belong mainly to the set of CF-s. 



 
 

    

 

A solution to reduce the number of absent HF-s that are 
possible to be generated in the presence of the CF-s might 
be the calculation of more HF-s through the use of an 
angular step smaller than π/750, but the additionally 
generated HF-s should inflate the existing partitions, 
involving higher algorithm-related memory requirements. 
Finally this should slow down the harmonic-identification 
procedures instead of improving their efficiency.  A more 
convenient solution should consist into an intelligent 
arrangement of the lines from the matrix storing the ANS-
s. Placing the rows corresponding to the CF-s on this 
matrix’s first positions (as they exhibited the greatest HF 
absent – associated probability) eliminates the risk of 
wasting runtime with sequential searches.  

5. TESTS RESULTS 
 

The mean runtimes required by tests are gathered by 
Table 2. For all tests, the harmonic orders were 100% 
correctly identified. The ratios (runtimes corresponding to 
the original algorithms) / (runtimes corresponding to the 
evaluation using only ANS-s) were smaller than 1 for all 
filters, as follows:  for the filter of length 4 a ratio of 
0.2857,  for the filter of length 6 a ratio of 0.6015 and 
respectively for the filter of length 8 a ratio of 0.2236.  

The “almost 0” value specified for the filters of length 4 
and 8 for the “solving HF absent” action has a confusing 
meaning in this context, as the real mean runtime elapsed 
to solve the “HF absent” cases is slightly higher then that 
corresponding to the HO evaluation using only the ANS - 
s (as runtime is inevitably wasted trying to find a missing 
HF).  The “almost zero” means that the average was made 
considering the total number of tests, an insignificant 
probability (mentioned in Section4) being related to the 
“HF absent” cases.  

Table 2. Mean runtimes exhibited by harmonic 
identification algorithms 

 Filter length 
Action/ 
          Mean time [msec.] 4 6 8 

Evaluation of HF 0.00936 0.00832 0.01040 
Partition identification   0.00676 0.002080 0.001040
Search within partition    0.00780 0.004600 0.007280
Solving HF absent cases almost 0 0.03536 almost 0
HO evaluation through 
original method (sum of 
the rows above) 

0.02392 0.05036 0.01872 

HO evaluation using 
only the ANS –s  0.08372 0.08372 0.08372 

 

6. CONCLUSIONS 

The class of original hybrid wavelet-based algorithms can 
be used for the fast identification of a polluting harmonic 
signal, with 2 major advantages over the use of Fast 
Fourier Transform:  
- only a very small number of samples is required for 
analysis (3 quarters from a period of the monitored signal, 
starting from the moment when the pollution begins), so 
the identification procedure can start very soon after the 

harmonic pollution begins and corrective measures can be 
taken earlier; 
- short-lasting (perhaps with intermittent features, only a 
limit of continuous 1.5 periods from the monitored signal 
being imposed to their presence) harmonic pollutions can 
be identified . 

The original algorithms based on “harmonic fingerprints” 
provide significant runtime savings (by a ratio of 3.44 or 
4.54, depending on which dwt filter is used) with the price 
of small additional memory requirements and acceptable 
programming effort.  

Our future work will address the reducing of runtimes for 
the calculation of DWT decomposition vectors.  
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