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Abstract: Bio-inspired neural circuits that fall in the category of central pattern generators have 
been used mainly in research concerning autonomous locomotion for legged and serpentine 
robots. This paper presents a novel locomotion controller based on bursting neuron models and 
time evolving synapses that is used to control a differential wheeled robot. We show how the 
proposed central pattern generator model is able to generate a flexible yet robust rhythm which is 
used to sequentially drive the wheels in a situation where the joints can only partially rotate. 
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1. INTRODUCTION 

Central pattern generators (CPG) are neural circuits 
known in neuroscience for being able to generate 
rhythmic activity without any external input. This type of 
neural network has been extensively studied in animals 
and experiments have shown that CPGs are responsible 
for activities such as locomotion, respiration, mastication, 
etc. For locomotion, a CPG can generate a specific 
sequence of motor commands in order to achieve a certain 
gait. Even if CPGs can generate motion patterns by 
themselves, sensory feedback can modulate the activity of 
the network that allows it to adapt to external conditions. 
This is essential in the real world where animals have to 
adapt their locomotion gaits to a variety of environments 
and must do this by using minimal resources.  

Evolution led to central pattern generators which, in 
combination with the central nervous system (CNS), form 
a distributed architecture: high level commands are sent 
from the CNS to the CPG to modulate its behaviour and 
obtain a certain type of locomotion. Moreover, direct 
sensory inputs are known to exist in CPGs that allow 
rapid responses to the changes in the environment; this 
approach reduces the number of control pathways from 
the CNS to the muscles and minimizes the response time 
to a stimulus (Rabinovich, 2006). 

Currently, in the field of robotics, artificial CPGs are 
taken into consideration as an alternative to classical 
locomotion control. Several attributes play in their favour: 

• Robustness: they can robustly encode locomotion 
information; 

• Adaptability and flexibility: they can adapt to 
external stimulus in order to change the locomotion 
pattern;  

• Resistance to noise: due to the limit-cycle behaviour 
of the individual neurons, the network can 
autonomously recover from perturbations and regain 
normal operation; 

• Ease of control: by changing a relatively small 
number of parameters, the CPG can exhibit many 
behaviours. 

2. DIFFERENTIAL WHEELED ROBOT 

2.1 Robot overview 

A differential wheeled robot is a mobile robot whose 
locomotion is based on two wheels being controlled 
independently. The relationship between the rotations of 
each wheel determines the type of locomotion. In our case 
we use the SkyBot, which is a differential drive platform 
built for educational purposes. The customizable Skybot 
(figure 1) is a differential drive robot composed of 
printable wheels and two hobby servos.  

The robot is made of polycarbonate parts and uses two 
electronic control boards called SkyPic and Sky293. The 
SkyPic is a minimal design with only the necessary 
components for controlling the robot. It includes an 8-bit 
PIC16F876A microcontroller, headers for connecting the 
servos, an I2C bus for additional communication, serial 
connection to the PC, a test LED and a switch for 
resetting the circuit. The Sky293 board is an extension 
board that was used to accommodate the sensors. 



 
 

     

 

 

 
Fig. 1. The SkyBot mobile robot 
 
2.2 Locomotion principle 

In nature only limited joints exist. Thus, all animals move 
by means of repeated sequences of oscillatory limb 
movements: human gait is an example of repeated, 
simpler movements and each of them can be decomposed 
in flexion and extension. Those movements are the result 
of an anti-phase activity of skeletal muscles which is 
coordinated by CPGs and due to this sequential 
characteristic, most of their applications in mobile 
robotics target articulated snake-like and legged robots. 

In this paper, the case of a wheeled robot is considered. 
All experiments involved the SkyBot, the differential 
drive platform built for educational purposes. It has been 
considered the case in which the wheels of the robot 
cannot perform complete rotations: this limitation can be 
attributed to the actuators that are used (linear motors, 
shape memory alloys, broken gearboxes, etc), to the 
environment (the wheel doesn’t have enough space to 
rotate) or to the actual shape of the wheel (the wheel may 
be broken). Their movements are thus confined in an 
angular interval, let’s say [-φ, φ]. In this case, a new 
locomotion principle can be applied such that the robot 
can still navigate, but with reduced mobility. 

To analyze the movement, we consider the kinematic 
model of a differential drive robot with a castor wheel: 
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The new locomotion principle states that each wheel can 
perform only an oscillatory movement between the above 
given angle values. Coordinating the oscillatory 
movements of the wheels, three possible movements can 
be found: 

• If the wheels oscillate in phase (phase difference is 
0°), i.e. in the same direction and with the same 
frequency, the robot will move forward and 
backward repeatedly. 

• If the wheels oscillate in anti-phase (phase 
difference is 180°), i.e. in opposite directions and 
with the same frequency, the robot will pivot left 
and right around a vertical axis (Instantaneous 
Centre of Rotation). 

• If the wheels oscillate with a phase difference that’s 
between 0 and 180°, the movement will be a 
combination of four movements: turning to one side, 
go forward, turn to the other side, go backward. We 
call “step” the length in a straight line of the robot’s 
trajectory during a sequence of the four movements 
described above. It has been shown that the largest 
step value is obtained for a phase difference of 90°.  

Other several terms that describe the motion are: 

Initial phase (θ) determines the initial robot orientation 
relative to the path. It has no effect on the locomotion 
when the robot is travelling along its path. 

Amplitude (A) is the rotation angle interval for each 
wheel; it has an effect on the step size. 

Offset (O) is a positive or negative angular value that’s 
added to the initial wheel angle such that the wheel’s 
resting position is not φ, but φ+O. The maximum rotation 
angle will than be φmax – O. 

Direction (Γ) is the angle measured between the initial 
robot orientation and a new orientation, after changing the 
offset values. This depends on the physical robot 
parameters (wheel radius, base width). Let R and W be 
the wheel’s radius and robot’s base width, respectively. 
From the equations of the robot’s kinematic model, the 
orientation angle can be found: 
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Given the characteristics for this type of locomotion, the 
motion can be controlled by means of three parameters: 
amplitude - to modify the step, offset - to modify the 
direction of movement and frequency - to modify the 
speed. Because the locomotion is composed of coupled 
oscillatory movements, it is possible to design a CPG that 
can generate the appropriate motor commands to drive the 
robot. 

3. CENTRAL PATTERN GENERATOR DESIGN 

The first step in designing a central pattern generator is to 
select the building blocks and the topology that are to be 
used for the neural circuit. Taking into consideration the 
locomotion characteristics imposed by the robot platform, 
one must specify the means by which the information is 
encoded in the activity of the CPG. Three elements are 
needed in order to build a complete topology: neurons, 
synapses and some kind of modified neurons that are able 



 
 

     

 

to read neural activity and translate it to motor commands 
capable to drive the actuators. These neurons are called 
motorneurons. The following sections briefly describe 
each component. 

3.1 Rulkov neuron model 

We use a neuron model developed by Rulkov et al. 
(Rulkov et al., 2005) that mimics the activity of living 
bursting neurons. The model is described as a two-
dimensional map and is computationally efficient. Three 
stable regimes may be selected by combination of its 
parameters: 

• Silent, in which the potential of the neuron remains 
in a constant resting state;  

• Tonic spiking, in which the neuron produces spikes 
at a constant rate;  

• Tonic bursting, in which bursts of spikes are 
produced at a constant rate, with a silent interval in 
between. 

Furthermore, in the boundaries of the parametric regions 
of those regimes, chaotic behaviour may be found 
(Rulkov, 2002). The possible set of behaviours can be 
controlled depending on the selection of a few 
parameters. For this study we will set the parameters of 
the neurons to work in tonic bursting regime. Refer to 
figure 2 for an overall idea of the model working in all 
three regimes. 

The mathematical description of Rulkov’s model as used 
in this work is as follows: 
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This is a bi-dimensional model, where variable xn 
represents a neuron’s membrane voltage and yn is a slow 
dynamic variable with no direct biological resemblance, 
but with similar meaning as gating variables in biological 
models that represent the fraction of open ion-channels in 
the cell. While xn oscillates on a fast time scale, 
representing individual spikes of the neuron, yn keeps 
track of the bursting cycle, a sort of context memory. 
Units are dimensionless, and can be rescaled to match the 
requirements of the robot. The combination of σ and α 
selects the working regime of the model: silent, tonic 
spiking or tonic bursting. 

The bursting regime of the model presents a slow wave 
(slow time scale) with fast spikes of activity sitting on top 
of it (fast time scale). We use the slow time scale (yn in 
(3)) to encode movement duration, i.e., the temporal 

length of the burst defines the temporal length of the 
movement, and the fast time scale (xn in (3)) to define 
angular velocity of the servo (higher frequency of the 
spikes corresponds to faster servo movements). A value 
of μ = 0.001 was used in all experiments. 

In figure 2, plot A represents the silent regime, B 
represents the tonic spiking regime and C displays the 
tonic bursting regime. Two parameters of the Rulkov 
model were modified to obtain different regimes; for the 
silent regime (A), α = 4, σ = 1; tonic spiking regime (B) is 
characterised by α = 4, σ = 0.01 while the tonic bursting 
behaviour (C) used α = 6, σ = 0.2. 

Finally, external input is modelled through In. Depending 
on this value a neuron will modify its behaviour. For 
instance, an external stimulus, e.g. a sensory signal, may 
be input using this parameter. This property is essential 
for autonomous organization: processing units in the CPG 
must be able to negotiate the rhythm among them. Also, 
entrainment between the CPG and the physical robot can 
be achieved through In by adding an error term as 
external input to a neuron (Herrero-Carron, 2011 a). The 
total effect of this parameter will depend upon past 
history of events, the exact value of In and the phase 
within the burst cycle at which the neuron finds itself. 

 
Fig. 2: Rulkov neuron regimes. Membrane potential (fast 
subsystem) is plotted in red while the slow subsystem is 
plotted in green.  
 
In our work, In is the current flowing from one neuron to 
another: a periodic sampling of the continuous function 
described below in (6). 



 
 

     

 

3.2 Kinetic synapse model 

A key property of CPGs is that they are autonomous and 
the different units in the circuit talk to each other to 
negotiate the overall function. Here we present the model 
we have chosen to implement synapses, the 
communication channel of neurons. In this work we use a 
chemical synapse model (Destexhe, 1994). The Destexhe 
synapse model used in this paper keeps track of the ionic 
channels, neurotransmitter concentration and the binding 
and unbinding processes that occur between 
neurotransmitters and receptors located in the 
postsynaptic region. 

Chemical synapses are unidirectional (see figure 3). When 
a potential spike arrives from the presynaptic neuron, the 
synapse releases a certain amount of neurotransmitter 
molecules that bind to the postsynaptic neuron’s 
receptors. With time, neurotransmitter molecules begin to 
unbind. If a succession of spikes arrives within a short 
time, the synaptic response to each of them may overlap. 
Therefore the state of the synapse is dependent upon past 
events, a mechanism of context memory. The additional 
time-scale provided by kinetic synapses in a CPG 
enriches synchronization between bursting neurons. For 
instance, we may choose to synchronize two bursting 
neurons upon the spike (fast) time scale or the burst 
(slow) time scale. 

 
Fig. 3. Simplified model of a chemical synapse.  
 
We have selected the kinetics of the binding and 
unbinding processes such that synapses act as filters of 
the fast time scale and synchronization occurs at the slow 
time scale. That is, the basic unit of synchronization will 
be the burst as a whole, not every individual spike.   
Beyond this, synapses may introduce delays for finer 
control of phase difference between neurons. The 
mathematical description of the model follows: 
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This equation defines the ratio of bound chemical 
receptors in the postsynaptic neuron, where r is the 
fraction of bound receptors, and are the forward and 

backward rate constants for transmitter binding and [T] is 
neurotransmitter concentration. The equation is defined 
piecewise, depending on the specific times when the 
presynaptic neuron fires (tf): during tr units of time, the 
synapse is considered to be releasing neurotransmitters 
that bind to the postsynaptic neuron. After the release 
period, no more neurotransmitter is released and the only 
active process is that of unbinding, as described by the 
second part of the equation. Times tf are determined as 
the times when the presynaptic neuron’s membrane 
potential crosses a given threshold. Synaptic current is 
then calculated as follows: 

        ( ) ( ) ( ( ) )syn post synI t g r t x t E= ⋅ ⋅ − ,                               (6) 

where I(t) is postsynaptic current at time t, gsyn is 
synaptic conductance, r(t) is the fraction of bound 
receptors at time t, xpost(t) is the postsynaptic neuron’s 
membrane potential and Esyn its reversal potential, the 
potential at which the net ionic flow through the 
membrane is zero. When coupling two Rulkov map 
neurons we will need to use a discrete synaptic function. 
We will build a sequence, let us call it In, by simulating 
I(t) as a continuous function and then taking samples 
every 0.001 time units. We say that a synapse is 
excitatory when the probability of the postsynaptic neuron 
firing a spike increases after the presynaptic neuron has 
fired. If the probability decreases, the synapse is 
inhibitory. If the postsynaptic neuron rhythmically emits 
spikes, an excitatory synapse will generally increase its 
frequency while an inhibitory one will generally decrease 
it. 

3.3 Motorneuron model 

Movement information is robustly encoded in the 
neurons’ bursting episodes. A neuron called motorneuron 
is then responsible of decoding this information and 
translating it into the signal that will finally be sent to the 
servo controller. This signal tells the angle at which the 
servo should be positioned, in degrees.  

With a slightly modified version of the motorneuron 
model provided in (Hererro-Carron, 2011 a), we have 
tried to mimic the real transformation occurring between 
living motorneurons and muscles. Motorneurons read the 
activity of other neurons using a simple threshold function 
that equals 1 if the membrane potentials of their 
corresponding neurons exceed the threshold values; 
otherwise the function equals 0. The role of this function 
is to detect individual spikes of neurons. By setting the 
threshold to, for example, υ = -1.5 a.u., this function 
applied to the potential trace of one neuron will have 
value 1 during individual spikes and 0 otherwise. In this 
way, communication between neurons is event-based. 
That is, the actual shape of neural activity is not so 
important, only their timing is. This can be a mechanism 
that the nervous system employs to lower the impact of 
noise. The role of motorneurons is now to integrate the 
individual events emitted by each one of the neurons. If a 
neuron emits a spike, the motorneuron will move the 
servo a little bit in a positive or a negative angle, 



 
 

     

 

depending on the promotor or remotor effect that is 
intended (correspondently).  If it emits a second spike 
close enough to the first one, the servo will be positioned 
a little bit further. If the neurons that are connected to the 
motorneuron are silent, the motorneuron will slowly drive 
the servo to a resting position of angle 0. This is 
accomplished through the following equation governing 
motorneurons in our CPG: 

        1, 2 1, 2 1, 2( ) ( )m C t m t Oϕ = = − +& & ,                              (7) 

where m1,2(t) represents the output signal of the 
motoneurons. O is an offset value and C(t) is a function 
described by: 
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where γ is the amplitude of the signal, s(t,υ) is a threshold 
function in which x is the membrane potential of the 
neuron, ν is a sort of threshold value. Terms a1,a2,…an 
describe the effect of the neurons over the motorneuron: if  
ai = 1, neuron i has a promotor effect on the 
corresponding  motorneuron, if ai = -1, neuron i will have 
a remotor effect on the corresponding motorneuron. 

3.4 Central pattern generator model 

Given the characteristics for this type of locomotion, the 
motion can be controlled by means of three parameters: 
amplitude - to modify the step, offset - to modify the 
direction of movement and frequency - to modify the 
speed. Because the locomotion is composed of coupled 
oscillatory movements, it is possible to design a CPG that 
can generate the appropriate motor commands to drive the 
robot. The motion is split in four sequences:  

• The wheels start by rotating in opposite directions 
with the same speed, offset and amplitude; 

• Both wheels rotate forward; 

• Both wheels rotate in opposite directions, but 
contrary to sequence 1; 

• Both wheels rotate backwards. 

The next design step is to identify what information needs 
to be encoded in the activity of the CPG. After that, a 
dynamical invariant must be defined, i.e. a stable, 
reproducible, repeatable neural pattern that is based on an 
activation sequence. As mentioned above, offsets, 
amplitude and speed of movement must be encoded. Also, 
a constant phase difference between 0 and 180° must be 
maintained in order to achieve a steady locomotion. 

The model (figure 4) that was developed is comprised of a 
group of four neurons. To drive the wheels we need two 
motorneurons. 

The main idea of the model is that all four neurons will 
trigger in a specific non-overlapping sequence and each of 

them will have a promotor or remotor effect on the 
motorneurons in such way that the motions sequences are 
obtained. The Rulkov neurons and synapse models are 
standard; the motorneurons were modified such that they 
are connected to all neurons of the model. The dynamical 
properties of neurons and synapses together with the 
topology of the circuit produce a coordinated alternating 
rhythm. Finally, the CPG will self-organize so that at any 
moment, each motorneuron will receive a signal from 
only one neuron to drive the wheels. 

The angle values for the wheels will be encoded in the 
spiking activity of each neuron. Each spike represents a 
small increment in the wheel angle. The motorneurons 
then integrate the spikes and output the actual angle value, 
which is represented by m(t) in (3). Therefore, amplitude 
can be controlled by changing the number of spikes per 
burst period; the larger the number, the greater the wheel 
angle. 

Amplitude can also be tweaked by changing the γ 
parameter.  The speed of the movement is controlled by 
altering the burst periods. A longer burst will translate 
into a slower evolution of the motorneuron signal. In 
practice, because the angle increments from one iteration 
to another are very small and communication and servo 
lag is significant, a number of CPG iterations are done 
before sending new angle values to the servos. 

Offsets are also encoded in the motorneurons, using the 
“O” parameter, such that the starting angle values are not 
zero, but O. By adjusting the offset values, one can 
change the trajectory of the robot. It is worth saying that 
in all cases, the robot will move in a straight line, 
regardless of the values of the offsets and the amplitudes. 
Changing the offset values, we change only the robot 
orientation.  

 Finally, the most important parameter encoded in the 
CPG is the phase difference that establishes the 
coordination between the wheels. In a more intuitive 
approach, phase difference is related with the time delay 
between the moment at which one wheel starts moving 
and the moment at which the second wheel starts moving. 
By measuring the angle difference between the wheels in 
this time interval, we can obtain the phase difference.  

 
Fig. 4. CPG model. N1, N2, N3 and N4 are Rulkov 
models, M1 and M2 are motorneurons which output servo 
values.  



 
 

     

 

In this CPG model, phase difference in achieved through 
the activation sequence of the neurons which, in term, is 
obtained using inhibition and asymmetric coupling. For a 
clearer example of how phase difference is obtained, let’s 
consider this activation sequence: N1→N2→N3→N4. In 
figure 4, the network is completely connected, i.e. each 
neuron is connected to all others. 

Also, each neuron is connected to both motorneurons and 
can simultaneously drive them. If all synapses have equal 
coupling strengths, the neurons will fire depending on 
which of them gets the chance to fire first. What we can 
do is encourage some neurons to fire before others in 
order to obtain the desired sequence and we do this by 
adjusting coupling strengths.  

For the above chain of activation, synapses from the 
forward path (1, 3, 5, 7 in figure 4) must have a weaker 
inhibitory effect than all other synapses. Like so, neuron 
N2 will be favoured to burst before others (N1, N4), then 
N3 and so on. Therefore, we will end up with synapses 
that have a powerful inhibitory effect and synapses that 
have a weaker inhibitory effect. If all neurons share the 
same parameters (except for initial starting conditions), all 
strong synapses share a certain coupling strength and all 
weak ones share another coupling strength, the period of 
the whole CPG will be composed of four equal regions in 
which each one is a burst period of a corresponding 
neuron. 

In figure 4, there are 12 “chemical” synapses and 8 
“electrical” synapses. The signs from the electrical 
synapses indicate the effects (remotor or promotor) that 
neurons have on motorneurons. Each link between a 
neuron and the corresponding motorneuron has a positive 
or negative sign. This marks the promotor or remotor 
effect of the neuron on the respective motorneuron. As it 
can be seen in figure 4, during the activation period of 
N1, the motorneuron will be driven in order to increase 
the output signal (wheel angle), whereas an activation of 
N3 will decrease the motorneuron’s output signal. 
Considering promotor and remotor neuron effects on 
motorneurons and given the fact that a complete wheel 
oscillation takes one CPG period and the delay between 
wheel movements are one burst region wide, a phase 
difference of 90° between the wheels is obtained. More 
intuitively, when one wheel has reached 1/4 of its 
oscillation, the second wheel will begin to rotate. With 
this model the phase difference cannot be changed due to 
the non-overlapping activation sequence. It is fixed to 90 
degrees. A plot with the simulation of the CPG is 
presented in figure 5. 

Note the non-linearity of the output angles. This is due to 
the neuron behaviour; the frequency of the individual 
spikes slightly varies across a bursting cycle so when 
spikes are integrated and we take into account the 
negative term in (6), near-linear responses are obtained. 

 

 
Fig. 5. A stable activation sequence is shown; the output values for the motorneurons were set between 9 and -9 (γ = 9). 
 
To change the direction of movement between moving 
forward and moving backward, the activation sequence is 
changed by changing coupling strengths. For moving 
forward, the sequence is N1→N2→N3→N4. For moving 
backward, the sequence is N1→N4→N3→N2. To steer 
the robot, the wheel offsets and the amplitude have to be 
changed, so that O + A ≤ |φmax|, where φmax is the  

 
maximum rotation angle (clockwise or anti-clockwise) 
that the joint can achieve. Figures 6 and 7 show plots 
from forward and backward activation sequences which 
were obtained solely by altering synaptic conductance. 
Next, we investigate what happens if we change the 
activation sequence, i.e. movement direction while the 
network is still running (figure 8). 



 
 

     

 

 
Fig. 6. Neuron activity (red, magenta, blue, green corresponding to N1, N2, N3, N4) and motorneuron signals (cyan, 
yellow). Plot extracted from a forward trajectory. The simulation was done by simulating one step at a time; the period, 
in simulation steps is about 1540. The burst periods of the neurons are approximately equal, with 364, 362, 360, 363 
steps for N1, N2, N3, N4 respectively. The number of spikes per burst for each neuron was about 77. 

 
Fig. 7. Neuron activity (red, green, blue, magenta, corresponding to N1, N2, N3, N4) and motorneuron signals (cyan, 
yellow). Plot extracted from a backward trajectory. The simulation was done by simulating one step at a time; the 
period, in simulation steps is about 1540. The burst periods of the neurons are approximately equal, with 362, 362, 359, 
361 steps for N1, N2, N3, N4 respectively. The number of spikes per burst for each neuron was about 77.The CPG is 
stable for both forward and backward trajectories, the oscillation periods are nearly identical. 
 



 
 

     

 

In figure 8, note the transient period at the beginning of 
the simulation. After the synapses have been set, the 
neurons negotiate an activation sequence and after a 
certain number of iterations which depends on coupling 
strength, 

they achieve a stable rhythm (figure 8.A). We run the 
simulation for 10000 iterations and then change coupling 
strengths for a backward activation. The transient period 
lasts several hundred cycles in which a new stable 
sequence is achieved. 

 
Fig. 8. Plot A: transient period including a change in movement direction. Plot B: motorneuron angles.  
 

4. IMPLEMENTATION 

4.1 Model and simulation 

A first approximation of the robot trajectory, using the 
above described locomotion principle has been done by 
implementing an idealized kinematic model of a 
differential drive robot. By numerically integrating (1), 
we can obtain the robot positions and orientation relative 
to a global reference frame. The idealised model has been 
implemented using the Matlab/Simulink computing 
environment. 

 
Fig. 9. The kinematic model of the robot modelled in 
Simulink. 
 

 
We used this model to predict the robot’s trajectory and 
observe how parameters like offset, amplitude, wheel size 
and base length affect the trajectory. Figure 10 illustrates 
the trajectory of the robot for forward locomotion. 

The simulated trajectory of the differential drive using 
motoneuron-alike motor signals (sine signals) is phase-
shifted by 90°. The simulation has been carried in 
Matlab/Simulink, with a signal amplitude of 90°. Wheel 
radius is 55 mm, base width is 103 mm. 

 
Figure 10: Simulation of a forward track using Matlab. 
 
The CPG model has been implemented to drive the robot 
remotely. Because the PIC16F876A has a small data 
memory, the CPG model cannot be directly implemented 
on the microcontroller. Instead, it has been implemented 
on a personal computer and the results of the simulation 
are transmitted in real time to the robot. 

Finally, we will present the schematic diagrams of the 
programs used to implement the CPG. Two programs 
were used to drive the robot. 



 
 

     

 

One program runs on the PC and simulates the CPG 
(figure 11) and the other one (the slave) runs on the 
microcontroller and receives the commands sent by the 
first program (host program). The first program uses 
threads. In order to control the CPG, we must have the 
ability to alter its parameters while the simulation is 
running. For this reason we use threading.  

 
Fig. 11. Schematic diagram of the main control program. 
 
The main thread iterates the CPG and outputs the 
positions for the wheels while a second thread listens for 
user input. According to the input, the CPG parameters 
are changed; figure 12 shows the flow chart on which the 
main thread is based. Because the angle increments 
between two successive iterations are relatively small (0.5 
to 1.5 degrees), multiple iterations are computed before 
sending new wheel angles to the robot. No entrainment is 
implemented between the CPG and the actual servos.  

The PC can compute the iterations very fast, faster than 
the servos can respond. To make sure that both servos 
have time to position before new angles are computed, a 
blocking communication protocol has been implemented 
between host and slave. The master does not compute 
new iterations unless it receives a “Ready for data” signal 
from the robot.  

In order to operate correctly, mutual exclusion operations 
(mutex) had to be implemented. These operations are 
needed because in some situations different threads may 
try to access the same variable, leading to read-after-
write, write-after-read or similar data dependencies. By 
using a mutex, variables that are used by a thread are 
locked by the same thread, not allowing others to read or 
modify that variable while it is in use. 

The second program (figure 13) runs on the 
microcontroller. In the experiments, two bumpers were 
used as external sensors to detect collisions. The idea here 
is to detect collisions and generate a command that will 
modify the trajectory in order to avoid obstacles.  

The robot will monitor the bumpers while receiving motor 
commands. After it received a set of angle values, the 
robot sends a new signal with a time delay that is long 

enough for the servos to position. This delay depends on 
the number of steps with which the host program is run. 
The larger this number, the bigger the angle differences 
between two motor commands and therefore the 
positioning time for the servo is bigger. Also, iterations 
between two motor commands must be small enough to 
correctly approximate the motor signals. The larger the 
number, the smaller is the sampling rate; that can lead to 
data loss in wheel positions.  

Therefore, the sampling rate must be at least double the 
frequency of the motor signals (Nyquist). 

Communications were implemented using a serial RS232 
interface which is prone to errors when using simple 
hardware. In some cases, communications may be 
interrupted due to noise or other problems. For this 
reason, error detection and handling has been added to the 
protocol which enables the system to recover. 

 
Fig. 12. Flow chart for the host CPG program. 
 
 According to the user input, functions that alter the 
parameters of the CPG are called. The actual CPG 
computation is done in the Send_data() block, where the 



 
 

     

 

desired number of iterations are computed; the angle 
values are then sent to the robot via serial port. 

 
Fig. 13. Flow chart representing the SkyBot program.  

Figure 13 illustrates the actual trajectory of the robot 
which was filmed while moving on a forward trajectory. 
The robot was recorded using a high resolution video 
camera and the trajectory has been extracted using motion 
capture software. Consecutive positions of the robot’s 
center of mass were stored as coordinates which were 
plotted as a single XY graph.  

 
Fig. 13. Real robot trajectory extracted from video 
tracking of a forward movement (arbitrary pixel 
coordinates are used for Y axis, and number of frames is 
used for the X axis). Parameters used:  neurons: α = 9, σ = 
0.5 , σe = 1; synapses: α = 0.5, β = , Esyn = 9, gsyn1,2 = 
25, T = 1, release_time = 0.01; motoneurons: γ = 900, υ = 
-1.5, O = 0. 
 

6. CONCLUSIONS 

In this paper we show how a bio-inspired central pattern 
generator can be implemented so it can drive a differential 
wheeled robot where joint limit constraints have been 
added. The elements that made the CPG were considered, 
adding extra-functionality and explanations were 
considered necessary. The behaviour of the central pattern 
generator was analysed. Furthermore, the implementation 
of the control and communication protocols was 
described. The wide range of rhythm negotiation 
properties of the proposed model leads to a rich variety of 
self-organized locomotion. We consider that a bio-
inspired approach on locomotion control will lead to 
increased autonomous robot behaviour. This includes 
better adaptation capabilities to external factors and 
immunity to noise. 
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