

The Evolutionary Design of a Framework for Computational Steering

Cosmin M. Poteraş*, Călin Constantinov*, Mihai L. Mocanu*

* Faculty of Automation, Computers and Electronics, University of Craiova, RO-200440 Romania
(e-mail: { cpoteras, mmocanu}@software.ucv.ro)

Abstract: Computational steering aims both to interfere with an otherwise autonomous
computational process, to change its outcome, and to enable the discovery of new features of the
computational processes through integrated experiments. Traditionally, computational steering has
been applied to large, compute-intensive and non-interactive simulations, where it more
specifically refers to the practice of guiding a simulation experiment into some region of interest.
In this paper, we review the motivations for computational steering and introduce an evolutionary
design for a framework that takes into consideration two of its main important aspects, program
steering and data steering, together with an approach for static scheduling based on a genetic
algorithm. We then outline the capabilities of the framework by simulating the execution for three
categories of applications, with low, medium and high communication needs, under two running
scenarios – with and without tasks migration (required remote data will always be transferred).
The results showed that program steering could bring more benefits in the given setting than data
steering, and that there is a reasonable loss of efficiency between 16 and 64 processors, which
could be explained correlated to the loss in data transfers gain.

Keywords: Computational Steering, Modeling, Simulation, Visualization, Genetic Algorithm.

1. INTRODUCTION

Modeling and simulation have become key phases for a
wide spectrum of applications in modern research in all
computer science areas. Cluster and grid simulation
applications that employ parallel computing techniques
(i.e. MPI, OPENMP) to simulate real processes are just a
common example (Watanabe, 2011). Modeling, as a
general term, denotes a process that offers an abstract
representation of a system, which allows, in turn, through
its study, the formulation of valid conclusions on the real
system. When the study involves experiments on the
model (or, to be more specific, numerical evaluation of
the model behavior, using the computer, under various
hypotheses and working scenarios), we call that
(numerical) computer simulation.

Traditionally, computer simulations are computationally
intensive, non-interactive and slow – if they aim towards
the obtaining of meaningful results with a high degree of
confidence (result accuracy is conditioned by the
granularity of the model, which should be adjusted up to a
useful “scale”, sometimes in iterative steps). The
traditional steps in simulation are to construct a model,
prepare input, execute a simulation, and then visualize the
results. A text file describing the initial conditions and
parameters for the course of a simulation is prepared, and
then the simulation is submitted to a batch queue, to wait
until there are enough resources available to run the
simulation. The simulation runs entirely according to the
prepared input file, and outputs the results to disk for the

user to examine later. However, more insight and a higher
productivity can be achieved if intermediary inspections
of executions are allowed, and the model could be
adjusted accordingly. This is the underlying idea of
computational steering: researchers change parameters of
their simulations on-the-fly and may receive feedback on
the effect. In this way simulations may be executed in an
interactive manner. This could be a simple matter, as
allowing the user to monitor the values of some
parameters in their simulation and, if necessary, to edit
the values of others, or a more complex issue, that would
require the integration of efficient infrastructures and
good computational techniques. Anyway, a supplemental
and useful benefit will be in that the researcher running a
steerable simulation obtains an intuitive understanding of
its behavior, i.e. the correlation between the modifications
and the reactions of the process.

Computational steering can be viewed simply as a process
of manual intervention on an autonomous computational
system, with the goal to analyze and modify outputs, in
order to increase its efficiency. But apart from its pure
applicative perspective, computational steering can be
examined from a broader technical perspective; for
instance, we may consider the modification of memory
amount available for a process, with the goal to observe
and influence the effects over the execution time. This
paper deals with the concept especially in the latter,
broader sense. The taxonomy of the concept also
includes: program steering, which has been defined as the
capability to control the execution of resource-intensive,
long running programs (this may imply modifications of

program state, starting and stalling program execution,
etc.), data steering (which implies the management of
data output, alteration of resource allocations etc.), and
dynamic steering (which requires the user to monitor
program or system state and have the ability to make
changes, through “add-ons” routine calls or data
structures interaction in the code). The development of
distributed simulation and steering frameworks, able to
support run-time adjustments and live visualization, has
not been an easy task. Extensive surveys of research in
this area were carried out in over the last two decades (Gu
et al, 1994; Allan and Ashworth, 2001); however not
many of the projects led to practical tools.

The rest of the paper is organized as follows. Section 2
describes background and related work in the domain,
that is, similar systems and useful ideas. The next section
reviews the initial design and a few implementation
details for the State Machines Based Distributed
(Sub)System (Poteras and Mocanu, 2011). Section 4
describes the evolutionary design aimed to accommodate
the conceptual model for a Distributed Chunks Flow
Management (Sub)System (Mocanu and Poteras, 2011).
Section 5 explains how the two subsystems work together
and presents integrative experimental results based on a
genetic algorithm for static scheduling. The last section
concludes the paper and presents some future work ideas.

2. BACKGROUND

Some of the most relevant frameworks for distributed
simulation and computational steering, for the scope of
this paper, may be considered: COVS, RealityGrid,
CUMULVS and CSE. COVS, or Collaborative Onlline
Visualization and Communication (Riedel et al, 2008) is a
framework that encapsulates common visualization
frameworks (VTK, AVS/Express), steering technologies
(VISIT, gViz, ICENI) as well as communication libraries
(VISIT, PV3) that carry out the data transportation and
steering commands. This multi-framework integration
allows COVS to run simulations independently from
visualization and communication tasks. The RealityGrid
(Jha et al, 2004; Brooke et al, 2003) is an API library
consisting mainly from two modules. The former is
responsible for offering steering capabilities and the latter
provides tools for dedicated client applications.
RealityGrid uses check-pointing techniques for
supporting steering commands. CUMULVS, or
Collaborative User Migration User Library for
Visualization and Steering, has been developed at Oak
Ridge National Laboratory and has been designed for the
development of collaborative on-line and interactive
simulation and visualization. The power of this platform
consists in the advanced recovery techniques, the tasks
migration support and check-pointing. CSE, or
Computational Steering Environment (van Wijk, 1997;
van Liere, 1997) has been developed at the Center for
Mathematics and Computer Science, in Amsterdam. It
uses a centralized architecture around a replicated Data
Manager that is able to carry out steering commands and
coordinate the simulation tasks.

The Data Manager from CSE leads us to an important
problem in the analysis of these efforts: data availability.
The computations may be dramatically slowed down by
the acquiring of data. Dataflow processing is at the same
time the most appropriate model of programming and a
crucial factor for achieving the desired performance.
Existing systems like BitTorrent and Apache Hadoop
Distributed File System implement a parallel dataflow
style of programming which provide the data required by
a distributed application’s processes in the most efficient
way. The BitTorrent Protocol (Cohen, 2008) establishes
peer-to-peer data transfer connections between a group of
hosts, allowing them to download and upload data inside
the group simultaneously. The torrents systems that
implement BitTorrent protocol use a central tracker that is
able to provide information about peers holding the data
of interest. Once this data reaches the client application, it
tries to connect to all peers and retrieve the data of
interest. However, it is up to the client to establish the
upload and download priorities. Torrents are mainly
systems that transfer files in distributed environments in
raw format without any logical partitioning of the data,
and they might be a good choice for distributed
environments, especially for those based on slower
networks. However, the main drawbacks of torrent
systems are related to the centralized nature of the torrents
tracker as well as leaving the entire transfer algorithms
and priorities up to the client application which might
cause important delays if the transfers trading algorithm
chooses to serve a peer that might have a lower priority at
the application level. The centralized nature of the tracker
concentrates the reliability around the tracker; if the
tracker goes down, the entire system becomes not
functional.

Rather than relying on hardware to deliver the highest
availability, the Hadoop Distributed File System was
designed to detect and handle failures at the application
layer, by this delivering a highly-available service on top
of a cluster of computers, each of which may be prone to
failures. Hadoop is a software library conceived as part of
the Apache Hadoop (http://hadoop.apache.org/)
distributed systems framework. It has been built upon the
Google’s Map-Reduce architecture as well as HDFS file
system, which proved to be scalable and portable. It uses
a TCP/IP layer for internal communication and RPC for
client requests. The HDFS has been designed to handle
very large files that are sent across hosts in chunks. Data
nodes can cooperate with each other in order to provide
data balancing and replication. The file system depends
closely on a central node, the name node whose main task
is to manage information related to directory namespace.
HDFS offers a very important feature for computational
load balancing, namely it can provide data location
information allowing the application to migrate the
processing tasks towards data, than transferring data
towards processing task over the network (Allan and
Ashworth, 2001). The main drawback of HDFS seems to
be, again, the centralized architecture built around the
name node. Failure of the name node implies failure of
the entire system.

Due to the diversity and complexity of distributed models,
choosing the appropriate design for a system like ours is
not an easy task. Besides of the usual requirements
imposed to a distributed system, like scalability,
flexibility, extensibility, portability, we looked for support
for load balancing and tasks migration, and safety
features. For this we concluded to a form of design known
as evolutionary design. Essentially, evolutionary design is
a way to construct a system in which the design grows as
the system is implemented. In other words, design is part
of the programming processes and the design changes as
the program evolves.

The overall objective of our design is to merge together
parallel mapping of tasks in the form of state machines,
able to be deployed in a robust way over a network, and
parallel dataflow handling, separated into a standalone
module whose main role is to acquire, store and provide
the data required by the application’s processes in the
most efficient way. We will describe in this paper several
iterations of the actual design of the framework that
consider both main and important aspects, program
steering and data steering, together with an approach for
static scheduling based on a genetic algorithm. Besides
the overall testing of the resulting system, we’ll prove the
capabilities of the framework by simulating and
optimizing the execution for several categories of
applications, with low, medium and high communication
needs, under different running scenarios – with and
without tasks migration, but with appropriate transfer of
the required remote data.

Thus, the term evolutionary design gets another
connotation which is also within the scope of this paper.
Evolutionary design, applied to algorithmic development,
incorporates a computational model of evolution and
natural selection that has been successfully applied to
many complex optimization problems with nonlinear,
temporal or stochastic components, where traditional
optimization techniques proved to be inadequate.

3. FRAMEWORK INITIAL DESIGN AND
IMPLEMENTATION

The enabling practices of continuous integration, testing,
and refactoring, provide a new environment for the
evolutionary design. In order to make this work, one
should define clearly not only the goals, but also the
restrictions of the future system. Many domains impose
strict requirements for software in execution, calling for
very high safety standards as well as high performance
environments, being simply incompatible with errors and
instability; there may dramatic effects associated, for
instance, with an error in a software application that
assists a surgery. To improve the reliability and safety,
one has to make sure that in any moment the software is
in a consistent state; this might need the analysis of all
possible states prior to the system development, making
sure the system’s reaction is appropriate in any state. A
good practice would be to analyze all possible states prior
to the system development and by ensuring the system’s
reaction is appropriate in any state. All these constraints

lead us to the idea of representing tasks as finite state
machines. State machines can provide code safety,
robustness, traceability, excludes erroneous states and
inconsistencies while providing a simple and well
structured “package” for representing complex tasks.
Being represented as “packages”, tasks are encapsulated
and can easily migrate in distributed environments.

Fig. 1. The structure of the proposed distributed system.

Tasks migration together with live monitoring of the
distributed environment reveals new possibilities for
defining dynamic load balancing algorithms. We aimed
initially to a new design model for a distributed
simulation framework (environment) whose architecture
is illustrated in Fig. 1. The model has been implemented
as a class library that reduces considerably the
applications development time. Our model consists of five
main modules: Simulation Module, Control and
Communication Module, Visualization Module, Shared
Memory Module and Client Application. The processing
is being performed by the simulation processes. They are
represented as state machines, and there can be run as
many processes as each host can handle efficiently. The
shared memory module can comply either to a distributed
form or a centralized one. Its main goal is to store the
system’s parameters which usually realize the
computational steering. The control and communication
module handles data flow as well as monitoring and
migration jobs. It is responsible for acquiring input data,
forwarding output data to the visualization filters,
synchronizing access to the shared memory while
monitoring the system’s resources and loads and realizing
machines’ migration whenever necessary. The control and
communication module is able to rise the computational
steering to a new level by allowing the user to manually
specify simulation processes migration. There will be
only one instance of the control and communication
module on each host. The visualization module is
responsible for translating simulation’s output which
usually is in a raw format into a more appropriate format
for visualization. The client application initializes,
monitors, controls (steers) and analyzes the simulation.

The architecture is based on the theoretical model of a
state machine, which is a quintuple

where is the set of input parameters (input alphabet,
finite, non empty), S is the set of states, is the initial
state, is the states transition function and F
is the set of final states. The architecture ensures the
separation between machine code and machine data

The library consists of a set of abstract classes and
interfaces that allow the developer to define the machine’s
algorithm by extending/implementing the proper methods.
The library’s engine automatically manages the state
machines and their migration. The main class of the
platform is the StateMachine class. It is an abstract class
which serves as base class for every type of state machine
required by the application (StateMachineX,
StateMachineY). It handles the states succession and
computations by employing the performComputation
method together with the states transition table. The
performComputation method will be overridden by the
derived types and it will hold all custom algorithms
specific to each state. The StateMachine class starts
computations by invoking the method passing as
parameters the initial state, performs computations
associated with this state and retrieves the output.

The states transition table is being checked for the next
state and the process continues in the same manner. Data
is being separated from code by using StateMachineData
objects. StateMachineData holds all relevant information
about the machine: parameters, current state, transition
table, machine identifier – unique in the entire
environment, the machine type (StateMachineX,
StateMachineY), final states, etc. All these can be
extended by deriving the StateMachineData class. The
transition table (TransitionTable) its represented as a
mapping between pairs <parameters, state> and future
state. The transition is performed by method getNextState
which retrieves the next state based on the current state

and the output values of the parameters from the current
state. For flexibility reasons the parameters have been
interfaced by the IParameter interface leaving its
implementation up to the developer. IParameter offers
getter and setter methods as well as parameters matching
methods. The state machines’ management is ensured by
the “brain” class, which is StateMachinesManager. Its
role is to manage all the machines running on a host. It is
able to monitor the system, to ensure data availability, to
create, run and migrate machines to and from other hosts.
The most important tasks performed by the
StateMachinesManager are related to tasks migration and
load balancing. These tasks are performed by the
following methods: packMachine() – prepares the
machine for migration, unpackMachine() – prepares
machine for resuming the processing on the new host,
mpiSendMachine() – sends the machine to other host, and
mpiReceiveMachine() – receives the machine from
another host, and RunMachine() – which resumes the
processing. Each host in the distributed environment will
run one instance of the state machines manager.
Considering the above implementation details we can
enumerate the steps needed for implementing distributed
simulation applications on top of the framework.

• Define system parameters (implementing IParameter)
• Define all types of machines needed. For each type, a

new derived class will be created inheriting the class
StateMachines. The method performComputation will
hold the processing algorithms.

• Instantiate the TransitionTable class and populate it
with mappings of type <<parameter, current state>,
future state>

The StateMachinesManager will be instantiated and run
on each host. Fig. 2 illustrates the design and also the
workflow within the system.

Fig. 2. The library’s initial architecture and workflow

4. DESIGN EVOLUTION: DISTRIBUTED
CHUNKS FLOW MANAGEMENT SYSTEM -
THE CONCEPTUAL MODEL

As we usually consider it, a design is a mapping process
from the design requirements to a design result. When the
design requirements are modeled in a functional space,
design results may be found either in an attribute space or,
more closely to the evolutionary approach, in a parameter
space that evolves together with the model. The
completion of the model for data to describe design
requirements and the design results developed at different
design stages, from conceptual design to detailed design,
is corresponding to the design descriptions at different
design stages.
For the proposed data flow management system, whose
model is illustrated in Figure 3, we started from a series of
“autonomous” features and then we looked for the
integration requirements, with the framework described in
the previous section. The main features depicted in the
initial stages of design were:

- cost: better price/ performance ratio can be obtained
as long as commodity hardware is used for the
component computers;

- predictability: the system must provide the desired
responsiveness in a timely manner;

- portability: cross-platform system design that does
not require special system privileges for running):

- extensibility: new data partitioning modules can be
integrated at runtime);

- scalability: hosts can be added at run-time; storage
capacity, the size of the network or the overall load
on the system can be increased, and this should not
have a significant effect;

- run-time data consistency (synchronization): this is
the ability of the system to coordinate actions of
multiple components (this underlies the ability of a
distributed system to act like a non-distributed one);

- abstract communication API;
- customizable data handling for all data types, etc.

Fig. 3. The data flow management system design model

The data flow management system is intended to separate
data flow management from the processing level the
framework provides, while maintaining high data
availability and, possibly, fault tolerance, which is in our
understanding the capacity to recover from component
failures without performing incorrect actions. The entire
model has been built around one key element, the data
chunk. It usually represents a file partition but it can also
be any data object required by the application’s processes.
Besides the data piece itself, a data chunk also contains
meta-information describing the data piece, like: size,
location inside source file, the data type, timestamp of
latest update or the class that handles chunks of its type.
Thus, the most important contribution of the data flow
management system is the way it handles chunks of
different types in an abstract mode without actually
knowing what is inside the chunk, leaving the data
partitioning up to the application level. This is very
important from an application perspective, allowing it to
map data chunks to processing tasks very efficiently. No
restrictions are imposed by the data flow system on data
partitioning. The bridge between the abstract
representation of data chunks and their actual type is the
Type Manager. It is able to make use of external classes
(defined at the application level) where all the file type
specific functionality can reside. The classes are
dynamically loaded whenever the application layer needs
partitioning, files reconstruction as well as information
related to the collection of chunks (i.e. the number of
chunks). It is the applications' developer task to
implement the data chunks handler classes. The data flow
management system only provides a set of interfaces that
help to implement the partitioning logic. For example, one
might need to handle two types of files in their distributed
application: image files and text files. In case of the image
files a data chunk might be represented by a rectangular
region of the initial image. Multiple such chunks can
cover the entire image. An image can be split into
rectangular chunks by dynamically invoking the image
partitioning method. In case a node needs an entire file
that is spread all across the system, the data flow system
can acquire all its chunks from different hosts and
recompose the image by dynamically invoking the image
reconstruction method. In case of a text file, the chunks
can take the form of paragraphs, or pages, or simply and
array of characters of a certain size. In a similar way the
files can be dynamically partitioned and reconstructed.
Later in this paper we will discuss the development effort
involved in writing such classes.

Data scalability and synchronization

As we mentioned before, the data flow system must be
able to scale up dynamically at run time without using a
central node. This functionality is achieved by the
Discovery Unit which broadcasts and listens to discovery
messages. There are two API interfaces that allow the
data flow management system nodes to communicate
with each other and also with the client application.

A key feature in any distributed system that handles large
amount of data is keeping data synchronized. Spreading

DISTRIBUTED ENVIRONMENT

FILES
MANAGER

Data Chunks
Meta-info

Discovery

Data Types
Manager

External API Internal API

Hosts 1, … N Application

data around the network while keeping it up to date uses
events. Each node that has updated a data chunk must
broadcast to all other nodes that he is aware of about the
changes, and event handlers update the timestamp of the
affected data. Depending on the nodes connectivity there
are two choices:

1. No event retransmission – the ideal situation when the
network bandwidth allows 1 to 1 connections between
any two nodes in the system; it is enough to broadcast an
update event once to all other nodes in the system.

Fig. 4. Retransmission not needed for event propagation

2. Event retransmission – when there is at least one node
not interconnected with all other nodes in the system. To
make sure that node is always notified about update
events, retransmission is necessary; to stop infinite loop
of update events nodes employ timestamps (whenever an
update event time stamped in the past it will be ignored)

Fig. 5. Events retransmission

A data flow scenario

The data flow algorithm is based on availability tables.
Let us analyze briefly a concrete scenario. If we assume
that the data flow management system consists of nodes
N0, N1 … Nn, let node N0 be interested in aquiring data
chunks C1, C2, … Cm. N0 will broadcast a request for
C1,...Cm to the entire system.

Algorithm 1. Data flow

Nodes N1...Nn reply back to N0 with a subset of C1,....Cm
that they host As soon as the replies arrive, N0 builds a
chunks availability matrix having as rows the nodes
N1....Nn and as columns chunks C1...Cm. (Ni,Cj) gets
valued 1 if the chunk Cj is available on host Ni, otherwise
it gets valued 0. N0's main goal is to establish as many
connections as possible, but not more than one connection
per serving host (at most n-1 connections at a time).
Chunks availability responses are performed in an
asynchronous manner so that N0 won't have to wait for all
responses before proceeding with transfers. Instead it will
establish connections as the responses arrive, overlapping
chunks transfer with availability requests. Whenever a
chunk transfer completes, the External API will be
informed about it and the client application can start
processing the newly acquired data. As chunks might
spread across the system while N0 transfers its chunks, the
availability matrix will be constantly updated by sending
new availability requests whenever a chunk transfer
completes and N0 has established less than n-1
connections (free download slots available).

The Algorithm 1 describes the data flow.

Data partitioning and support for load balancing

As previously mentioned, the user is able to retrieve
exactly the data of interest causing an important reduction
of the amount of data that travels through the network. A
data chunk is basically any logic unit of data extracted
from a data set (usually a file) according to a certain
algorithm that reflects the application’s needs. The data
extraction is based on the most simple principle: request –
answer. The application places queries against the data
flow management system, queries are broadcasted in the
entire system, each node invokes the appropriate chunker
(the one associated with the request’s type), the chunker
extracts the logical piece of data according to its internal
algorithm (custom algorithm designed to serve the
application environment’s needs), and ultimately it replies
back with the data chunk.

In distributed applications it often happens that the
processing of a data chunk requires less time than the
transfer of the data itself. For this reason it might be a
good practice to migrate the processing task towards the

N0 THREAD 1
procedure HandleChunkRequest(P0, ..., Pm)
 BroadcastChunkRequest(P0 ,... , Pm)
 while exists Pi not transferred, i=1,m

if available[Pi , Hostj] = true, j=1,m then
 AcquireThreaded(Pi,Hostj)
 wait(response)

N0 THREAD 2
procedure ReceiveChunksInfo(found, Host)
 if found[Pi] = true, i=1,m then
 available[Pi,Host] = true
 notify(raspunsNou)

data than transferring data to the processing host. DATA
FLOW MANAGEMENT SYSTEM is able to provide
through its external API locating information about the
data it holds (data aware system). It is the application's
task to query the system for data location information and
migrate the processing tasks throughout the nodes in order
to reduce or eliminate the data transfer time.

Developer's task: Implementing Chunker classes

Chunker classes define how files or data objects are split
into data chunks. A chunker class is a class that
implements a Chunker interface defining the following
content: requests structures, Response structures, Data
Requests handlers, Meta-Data Requests handlers
(ensuring data-awareness). An important feature of the
system is that not all nodes need to hold all chunker
classes known by the system. They only need the
chunkers associated with the data they serve. If unknown
type of data is requeste the node can dynamically load its
associated chunker ar run-time.

5. EXPERIMENTS AND RESULTS

Figure 6 illustrates the final design, resulted from the
integration of the two subsystems previously described:
the state machine based distributed system (SMBDS) and
data chunk flow management system (DCFMS).

Fig. 6. The result of the evolutionary design:
SMBDS-DCFMS integration

Ideally each host would run one instance of each system.
However this is not a constraint. For maximum
performance it is recommended that each SMBDS
process should be bound to a local DCFMS process. The
former subsystem will manage the execution of state
machines, acquiring data for their execution via the
external API interface of the second subsystem. Its
processes interact with the DCFMS process (through an
external API) in order to acquire input data for each state
of the machines. At the same time SMBDS procesess will
interact with each other for migrating tasks according to
localization information offered by DCFMS, whose
processes also interact between them as discussed in
section 3. Once integrated, a new issue appears, namely

scheduling the execution of the state machines as well as
the transfers between them so that the causality
constraints between machines states is accomplished and
the execution time is as short as possible. The states of the
state machines can define input-output dependencies
between them as no state execution can be performed
until all input data has been acquired. As a consequence
there can be considered two types of causality constraints:
internal (between the states of each machine) and external
(between the states of different machines).

For a better understanding of the scheduling algorithm we
will consider a state machine as being a task composed by
many subtasks and we will try to schedule the subtasks so
that they fulfill the causality constraints. Scheduling
subtasks instead of tasks is perfectly possible due to the
migration of state machines. By using migration of state
machines towards data, one can reduce the number of
transfers through the network. In (Wang et al, 1997) there
has been defined a genetic algorithm for scheduling
subtasks in distributed environments. The model used is
slightly different than the one introduced in this paper.
The main differences are related to the number of
processors per machine which is at most one, the network
topology which uses a crossbar switch, and the transfer
strategy which uses serial transfers for each network link.
Instead, DCFMS uses the Ethernet model, allowing the
network link to be used in multiple transfers at the same
time from multiple sources while SMBDS aims to be
suitable for multiprocessing machines. These differences
are reflected mainly in the evaluation phase of the genetic
algorithm. For this reason we will make use of the
selection, crossover and mutation phases as they are
presented in (Wang et al, 1997), while the evaluation has
been redesigned so that it fits the integrated model.

If we let S be the set of subtasks of all state machines and
|S| the number of such subtasks, then S = {si, 0<=i <|S|}.
Let P be the set of available processors P= {pj,
0<=j<|P|}, where |P| is the number of processors. The set
of data objects defining dependencies between subtasks
would be D, where D={ dk, 0<=k<|D| } and |D| is the
number of data objects. We also introduce the available
machines which might own a subset of P as being M = {
Mi P | i<>j, Mi Mj = , 0<=i,j<|M|}, where |M| is
the number of available machines.

 p1 p2 p3

s11

s12

s13

s14

s21

s22

s23

s24

s31

s32

s3

d

d

d3

d4

d

d9

d

d

d8

d1

d10
d12

d1

S = {s11, s12, s13, s14, s21,
s22, s23, s24, s31,s32,s33}
|S| = 11

D={d1, d2, d3, d4, d5, d6, d7,
d8, d9, d10, d11, d12, d13}
|D| = 13

P = {p1, p2, p3}
|P| = 3
M = {M1 M2,}, M1={p1},
M2={p2,p3}

Fig. 7. The execution model

In Fig. 7 we illustrate an execution example for three state
machines scheduled for execution on three different
processors. We may notice here the internal and external
causality constraints defined by the data objects. Data
objects are modeled in the context of the data flow
subsystem by logical partitioning of data. The next step is
to define a chromosome structure. The chromosome in
our case represents a complete schedule for a set of
subtasks. The chromosome will be composed by a
matching string and a scheduling string. The matching
string defines a mapping between the available processors
while the scheduling string defines the order of execution
for each state. An example of a chromosome is presented
in Fig. 1. There are available 5 processors that need to
execute 7 subtasks.

s0 s1 s2 s3 s4 s5 s6
p0 p3 p1 p2 p2 p1 p4

For evaluating the fitness value of a chromosome one
needs to evaluate the execution time of each subtask as
well as the size of each data object, before the scheduling.
This is a common practice in the scheduling research field
(Freund, 1994; Singh and Youssef, 1996).

Before proceeding with the chromosome evaluation we
will make the following assumptions: each machine can
perform multiple transfers at the same time on both input
and output lines, the transfer time for a locally available
data object is considered to be zero, all machines use
network links with the same bandwidth (considered to be
of two units) for both input and output, the bandwidth is
shared equally among all running transfers.

In the remainder of this section we will analyze an
example of the chromosome in Fig. 8. Table 1 defines the
size of each data object while Table 2 defines the
execution time for each of the subtasks on every
processor.

Table 1. Data size

Table 2. Execution time

As mentioned before each subtask will be scheduled as
soon as its data objects become available. A data object
will be transferred towards its associated subtasks as soon
as it becomes available. The scheduling of subtasks and

data transfers for the chromosome in Fig. 8 is presented in
Fig. 9.

 M0 M1 M2 M3

T p0 Data p1 p2 Data p3 Data p4

1

2
s1

3

s0

4
D1

5

6

d0

d2

7

s3

8

9

10

11

s2

12

s6

13
s5

14

s4

Fig. 9. Chromosome scheduling

Subtask s1 ends at moment T2 and produces d1 of size 2
needed for s3 to start its execution and d2 of size 6 needed
for s6’s execution. For the next two time intervals d1 and
d2 will share the output bandwidth of M2 equally (transfer
speed of 1 unit). At moment T4, d1 will finish transferring
as the simultaneous transfer of d0 from M0 does not affect
the download speed of M1 as it is already limited to one
unit due to the shared output bandwidth of M2. Even if M0
can upload data with full bandwidth (2 units), M1 can
increase the download speed only after T4. The same
applies for object d6. The fitness value of the chromosome
in figure 8 will be 14.

Using the above presented algorithm, the state machine
based initial framework design, completed with the data
flow management system, has been evaluated. There will
be considered two scenarios: running applications by
taking profit from tasks migration and running
applications without any migration. In the first scenario
there will be used all features of both (sub) systems. The
second scenario requires the tasks to be equally
distributed across the environment (in arbitrarily order)
without any kind of migration (required remote data will
always be transferred).

The results of the two scenarios are to be compared.
There have been considered three categories of
applications depending on their needs for communication:

• low communication applications (0 ≤ |D| ≤ (1/3) |S|)
• medium communication applications ((1/3) |S| ≤ |D| <

(2/3) |S|)
• high communication applications ((2/3)|S| ≤ |D| < |S|)

The execution time for subtasks (each state of state
machines) has been randomly picked up from the interval
[1-10]. The size of data objects has been picked up from
the interval [5-20]. The network speed on both input and
output has been considered to be equal to 1.

Data Size

d0 5

d1 2

d2 6

d3 3

M P s0 s1 s2 s3 s4 s5 s6
M0 p0 3 4 2 5 3 2 1

p1 4 2 5 4 3 2 3 M1
p2 2 4 4 3 3 2 4

M2 p3 3 2 3 2 2 4 3
M3 p4 4 5 6 8 7 5 6

s0 s1 s2 s3 s4 s5 s6

d0

d2

d3

d1

Fig. 8. Chromosome example

We considered two computational environments: the
former is composed of 8 machines with 2 processors each,
and the latter is composed of 32 machines with 2
processors each. The algorithm was executed using the
“elite chromosome” strategy which keeps an elite
chromosome that is updated as better chromosomes are
discovered. The algorithm stops after 150 cycles without
improving the elite chromosome. For each testing
scenario have been run 100 execution configurations. The
final result has been considered to be the average of all
results. There have been considered a number of 300
subtasks (states). It is known that each data object defines
at least one dependency between two subtasks. We will
call number of additional dependencies the number of
dependencies defined by a data object excluding the first
(basic) dependency. The total number of additional
dependencies (across all data objects) will be picked
randomly from the interval [1%-35%]. The distribution of
additional dependencies across data objects will also be
generated randomly. Table 3 presents the execution time
for each scenario, while Table 4 presents the amount of
data transferred in each scenario.

16 proc. / 8 machines 64 proc / 32 machines No.
of

states
Exec time

‐
migration

Exec. time
no

migration
Gain
%

Exec.
time

migration

Exec. time
no

migration
Gain
%

1 –
100 145.00 219.90 34.06 89.55 130.90 31.58

101‐
 200 246.45 351.10 29.80 146.55 199.35 26.48

201‐
 300 369.15 482.45 23.48 202.10 255.40 20.86

Table 3. Execution time results.

16 proc. / 8 machines 64 proc. / 32 machines No.
of

states
Amount
of data ‐
migration

Amount of
data – no
migration

Gain
%

Amount of
data –

migration

Amount of
data – no
migration

Gain
%

1 –
100 782.20 898.05 12.90 871.04 943.20 7.65
101‐
200 1762.46 1963.07 10.22 2342.24 2496.25 6.17
201‐
300 3258.20 3580.73 9.00 3817.17 4010.90 4.83

Table 4 –Transferred data results

Applications with low communication have employed
between 1 and 100 data objects. We noticed a loss of
computational gain between the 8 machines system and
the 32 machines system that can be explained correlated
to the loss in data transfers gain; allocating subtasks on
many machines requires data to be spread across a wider
environment which causes more transfers on the network
and implicitly causes delays on the computational level.
The same applies to the other two categories of
applications. Another conclusion based on the two tables
is that the computational gain and transfers gain reduce as
the number of subtasks increases. This was somehow
predictable; the more data objects involved in the
execution, the more transfers are to be scheduled and the
more delays are to be caused at the computational level.

6. CONCLUSIONS AND FUTURE WORK

In this paper we reviewed the motivations for
computational steering and introduced an evolutionary
design which considers two important aspects, program
steering and data steering, and tries to integrate them into
a unique framework. The initial design was for a
distributed (sub) system for managing computational
tasks represented as state machines. It proved enough
robust, scalable and flexible, able to accommodate the
conceptual model for a second (sub) system, for data flow
management across the distributed environment; this
works with chunks of different types in an abstract mode,
without actually knowing what is inside the chunk, thus
leaving the data partitioning up to the application level.
This is very important from an application perspective,
allowing it to map data chunks to processing tasks very
efficiently. The integration of the two systems has been
based on API interfaces. The experimental section of the
paper illustrates how the two subsystems work together,
how it can reduce in a considerable manner the
development time and presents integrative results based
on a genetic algorithm for static scheduling.

State machines scheduling has been performed at states
level by using a genetic algorithm. Experimental results
showed considerable computational gain especially in low
communication applications where the execution time can
be improved by up to 34% while the amount of data
transferred reduced with up to 12.9% related to non
migrating executions of the same workload.

Our future work intentions will consider the development
and inclusion in the combined framework (SMBDS –
DCFMS) of several algorithms for load balancing and
dynamic allocation of computational resources. Making
these algorithms “reactive” to available computational
resources, on one hand, and to small changes in data
distribution across the virtual computational environment,
on the other hand, could lead to improved predictable
performance, compared to the performance attained in the
case of static allocation and presented in this paper. We
intend to address in a more detailed survey paper the
development of dynamic load balancing of computational
resources combined to dynamic data replication
techniques.

Up to now, the effort of innovation in the distributed data
flow was focused to finding of new techniques of logical
partitioning and to offering, as much as possible,
complete information for data localization. Future work
should be directed towards the optimization of transfer
techniques among the nodes of a distributed system.
Monitoring network traffic and the development of
algorithms for network routes ranking could help deciding
which route is the most appropriate route for faster
transfers. The selection of an optimal dimension for data
chunks that are transmitted across a network, together
with caching techniques, might improve considerably the
availability of data at the level of computational nodes.
Employing probabilistic algorithms for simple (but not
simplistic) replication of data and state machines may

bring more efficiency and stability to a system that, in our
opinion, has a great potential of overall improvement.

The experiment and analysis fulfilled also convinced us
on the potential benefits that a visual environment for
programming and execution may bring. The design of a
friendly GUI (graphical user interface) appropriate for the
system described in this paper should allow: visual
definition of state machines and interactions among them,
easy intuitive definition and change of specific execution
scenarios, visual monitoring of executions and, last but
not least, joining and combining different techniques for
computational steering.

REFERENCES

Allan R.J., Ashworth, M. (2001) A Survey of Distributed
Computing, Computational Grid, Meta-computing and
Network Information Tools, available from
http://www.ukhec.ac.uk/publications/reports/survey.pdf

Brooke, J. M., Coveney, P.V. et al. (2003) Computational
Steering in RealityGrid. In Proceedings of the UK e-
Science All Hands Meeting

Cohen, B. (2008). The BitTorrent Protocol Specification,
 http://www.bittorrent.org/beps/bep_0003.html

Freund, R. F. (1994) The challenges of heterogeneous
computing. In Parallel Systems Fair at the 8th
International Parallel Processing Symposium. IEEE
Computer Society, 84–91, Cancun, Mexico.

Geist, G.A., Kohl, J.A., Papadopoulos, P. M. (1997)
CUMULVS: Providing Fault-Tolerance, Visualization
and Steering of Parallel Applications. In Intl. Journal of
High Performance Computing Applications, 11(3),
224-236

Gu, W, Vetter J, Schwann, K. (1994) An Annotated
Bibliography of Interactive Program Steering,
SIGPLAN Notices 29, 140-148 (and Technical Report
GIT-CC-94-15, Georgia Institute of Technology)

http://hadoop.apache.org (accessed oct. 2011) The
Apache™ Hadoop™ project

Isard, M., Budiu, M., Yu, Y., Birrell, A., Fetterly, D.
(2007) Dryad: Distributed Data-Parallel Programs from
Sequential Building Blocks, EuroSys -
European Conference on Computer Systems, Lisbon,
Portugal, 59-72

Jha, S., Pickles, S., Porter, A. (2004) A Computational
Steering API for Scientific Grid Applications: Design,
Implementation and Lessons. In Workshop on Grid

Application Programming Interfaces, Brussels,
Belgium

Kohl, J.A., Papadopoulos, P. M. (1998) Efficient and
Flexible Fault Tolerance and Migration of Scientific
Simulations Using CUMULVS. In 2nd SIGMETRICS
Symposium on Parallel and Distributed Tools,
Welches, OR

Mocanu, M., Poteras, C., Petrisor, C. (2011) Improving
Parallel Data Flow Support in a Visualization and
Steering Environment, In Recent Researches in Applied
Informatics – Proc. 2nd International Conference on
Applied Informatics and Computing Theory (AICT
'11), 226-231

Poteras, C., Mocanu M. (2011) A State Machine-Based
Parallel Paradigm Applied in the Design of a
Visualization and Steering Framework, In Recent
Researches in Applied Informatics – Proc. 2nd
International Conference on Applied Informatics and
Computing Theory (AICT '11), 232-236

Riedel, M., Frings, W. et al. (2008) Extending the
collaborative online visualization and steering
framework for computational Grids with attribute-
based authorization. In GRID 2008, 104-111

Singh, H., and Youssef, A. (1996) Mapping and
scheduling heterogeneous task graphs using genetic
algorithms. In Proceedings HCW’96 - Heterogeneous
Computing Workshop, 86–97, IEEE Computer Society,
Honolulu, HI.

van Liere, R., Mulder, J.D., van Wijk, J.J. (1997)
Computational steering. In Future Generation
Computer Systems, 12(5), 441–450

van Wijk, J.J., van Liere, R. (1997) An environment for
computational steering. In G.M. Nielson, H. M¨uller,
and H. Hagen, editors, Scientific Visualization:
Overviews, Methodologies, and Techniques, 89–110.
Computer Society Press

Wang, L., Siegel, H., Roychowdhury, V., Maciejewski,
A. (1997) Task Matching and Scheduling in
Heterogeneous Computing Environments Using a
Genetic-Algorithm-Based Approach, In Journal of
Parallel and Distributed Computing 47, 8–22

Watanabe, T. (2011) Numerical Simulation of Flow Field
In and Around a Droplet in an Acoustic Standing
Wave. In Recent Advances in Fluid Mechanics and
Heat & Mass Transfer, 170-175, Florence, Italy

