

Enhanced Graphic Simulator for Dynamic Fuzzy Path Finding Using
Potential Fields

Răzvan Tănasie*

*Software Engineering Department, University of Craiova, A.I.Cuza,
13,Craiova, RO-200585, Romania (e-mail: rtanasie@software.ucv.ro)

Abstract: An enhanced graphics engine was developed using Microsoft C++ and DirectX
libraries. This engine is part of a multi-purpose platform used, in this case, to simulate an
algorithm for fuzzy dynamic path finding using potential fields. The fuzzy system uses singleton
fuzzifier, product inference engine and center average defuzzifier. The developed algorithm is for
a dynamic environment with multiple moving obstacles. The inputs are a squared space map, the
initial and target position of the wanderer, the initial position and motion parameters of the
obstacles. The algorithm computes, if possible, a path from the initial position of the wanderer to
its target, using the weighted artificial potential field approach.

Keywords: Path finding, graphics engine, potential fields, fuzzy systems, dynamic systems,
simulation.

1. INTRODUCTION

A realistic graphic multimedia platform was developed in
order to be able to simulate in a virtual environment both
engineering systems and other applications such as games
or educational applications (Fig. 1.).

The platform allows a user who is un-familiarized with
the advanced graphic techniques to build, at any point, his
own engineering applications. He can set their constraints
and visualize their graphic simulations in a very pleasant
and realistic manner. Also, this platform permits a graphic
programmer to properly test his algorithms, without being
concerned with the environment development.

As a future development, a standardization method to
define the inputs will be developed (for instance, the
definition of the kinematic and dynamic models). This
will allow an automatization of the use of this platform.
Also a unit testing can prove to be very efficient and can
be developed in the future.

The platform brings an important innovative and
interdisciplinary aspect – there exist simulators for
engineering applications (Tarjan, 1987), there exist realist
render engines, but there i not a platform that contain
both. Also, apart from the scientific impact, there is an
impact on the educational environment. The graphic
simulations represent tools for educational process quality
enhancement. A graphic simulator is much more
appealing and easier to understand for the students, thus
becoming a stimulant in the learning process. Some of the
most important aspects of the platform are: portability,
modularity, parallelism, and, very important, extensibility.

The graphics engine is built on top of interfaces that
abstract the different graphics API’s the engine can use.
At the moment it is built around the DirectX API.

The graphics engine handles the rendering API
configuration and initialization, and exposes the interfaces
used inside the engine for graphics related resource
creation, modification and release. It also implements a
lighting manager and frustum culling that work closer to
the underlying API for increased efficiency and uses a
shader system.

It implements the pipeline necessary to draw engine
objects on the screen using the materials, lights and
effects they specify. It is also used by the interface
manager module and the Resource Manager module for
graphics resource creation.

Path finding is an important aspect of many domains like
robotics, game programming and any kind of movement
simulations. The idea of a path finding algorithm is
basically simple: given a moving object (that will be
called wanderer) in a space, a target that object has to
reach, the space map and a set of constraints, the
wanderer has to reach the target and, while moving, it has
to respect the constraints.

The path computing refers to computing the steps needed
to be taken to reach the target. The collision avoidance
takes care that the wanderer does not runs into any
obstacles. In order to have a good path planning
algorithm, these two parts must work well together
(Jungnickel, 2004).

A generic fuzzy system consists of four components
(Wang, 1997):
 Fuzzy rule base;
 Fuzzy inference engine;
 Fuzzifier;
 Defuzzifier.

Fig. 1. Graphic simulation platform structure and functionality.

In this application a fuzzy system uses singleton fuzzifier,
product inference engine and center average defuzzifier
were used to develop an algorithm for a dynamic
environment with multiple moving obstacles (Martinez et.
all, 1994).

The algorithm proposed is based on the principle of
artificial potential fields. This acts as a set of attraction
and repulsion forces. The target reach is considered to be
the wanderer’s scope. It is like an attraction pole for it,
while the obstacles are repulsion poles, no matter that
they are moving or rigid.

The algorithm computes, if possible, a path from the
wanderer’s initial position to its target, and uses the
artificial potential field approach to compute weights for
each of the possible future positions of the wanderer
(Khatib, 1986; Kavraki et. All, 1994). The initial
computed path is adapted on the way, based on the
obstacles motion that might interfere with it.

2. ENGINE STRUCTURE

The engine is made up of several modules that work
together in order to handle application needs. These
modules are:

 Graphics Engine;
 Scene Manager;
 Resource Manager;

 Interface Manager;
 Sound Engine;
 Math library.

2.1 Graphics Engine

The graphics engine is actually built on top of interfaces
that abstract the different graphics API’s the engine can
use. At the moment it is built around the DirectX 9 API
(Sanchez et. all, 2000). The graphics engine handles the
rendering API configuration and initialization, and
exposes the following interfaces used inside the engine
for graphics related resource creation, modification and
release:

 void CreateTexture (Texture *texture);
 void ReleaseTexture (Texture *texture);
 void CreateVertexBuffer (CVertexBuffer

*pVertexBuffer);
 void LockVertexBuffer (CVertexBuffer

*pVertexBuffer, UINT offsetToLock, UINT
sizeToLock, void **ppBuff, DWORD flags);

 void UnlockVertexBuffer (CVertexBuffer
*pVertexBuffer);

 void ReleaseVertexBuffer (CVertexBuffer
*pVertexBuffer);

 void CreateIndexBuffer (CIndexBuffer *ibuff);
 void LockIndexBuffer (CIndexBuffer

*pIndexBuffer, UINT offsetToLock, UINT
sizeToLock, void **ppBuff, DWORD flags);

Fig. 2. Object tree created by scene manager.

 void UnlockIndexBuffer (CIndexBuffer
*pIndexBuffer);
 void ReleaseIndexBuffer (CIndexBuffer

*pIndexBuffer);

It also implements a lighting manager and frustum culling
that work closer to the underlying API for increased
efficiency.

The graphics engine implements the pipeline necessary to
draw engine objects on the screen using the materials,
lights and effects they specify. It uses an advanced shader
system. It is also used by the interface manager module
and the Resource Manager module for graphics resource
creation.

2.2 Scene Manager

The Scene Manager maintains a tree of objects based
upon the hierarchy of the objects in the scene. An
example can be seen in Fig. 2.

Each object in the tree has links to its parent, it’s next
sibling or its first child. A child object is positioned
relative to its parent object. If for example the Body
object is translated to the right then all of its child objects
are also translated to the right, along with their child
objects and so on.

In Fig. 2. there are three special objects:

 The scene root object is there only to offer a starting
point when traversing the scene tree;

 Camera objects are also present in the scene. If a
camera needs to be attached to an object (for
example to the head object), it is simply added as a
child of that object;

 The Sky box.

The scene manager is also responsible for updating the
objects and feeding them to the render pipeline, and for
maintaining an acceleration structure for faster spatial
object querying implemented through a loose octree.

2.3 Resource and Interface Managers

The engine has to deal with several types of resources. It
must load, maybe reload, and release these resources as
the application progresses. This task is handled by the
resource manager.

The resource manager handles the following types of
resources:

 Textures;
 Fonts;
 Scripts (Python);
 Sound buffers;
 Shaders;
 Meshes.

Resource Manager operations are executed
asynchronously on a separate thread, as to not interfere
with engine operation. The resource manager keeps lists
of resources to be loaded, resources to be reloaded and
resources to be released.

Whenever the application asks for a resource, the
manager checks to see if it already exists. If it already
exists, a reference to the existing resource is given. If it
does not exist, a new resource is created and its id is given
to the requester.

If the application wants to load a resource, the resource id
is placed in the loading queue, and the resource will be
loaded when its turn arrives asynchronously, on the
resource manager thread.

The interface manager handles everything related to the
GUI initialization, interaction and release. It consists of a
hierarchy of widgets and layouts that can be used by the
client application to build a graphical user interface.

It also handles the interaction with and between these
widgets by the use of menu events. The interface Manager
makes use of python scripting for describing widget
behavior.

Scene Root

Body Tree

Head Left Arm Right Arm Left Leg Right Leg

Camera Sky box

Left Hand Right Hand

3. FUZZY PATH FINDING ALGORITHM

The algorithm is adapted from one that computes the path
for the wanderer in a static environment (the obstacles
don not change their initial position) (Barraquand, 1991).

Based on the dimensions of the environment, an n x m
location map is constructed (Tanasie et al., 2007). A
location is considered to be a square. In each location can
be:

 The wanderer;
 The target;
 Free location;
 An obstacle (either moving or static).

The motion is considered to be a discrete one, and the
positions and speeds are multiple of the square dimension
(Surmann et. All, 1996). The map can also be
implemented as a mesh graph. An example of such a map
is presented in Fig. 3., where a black location denotes an
obstacle, a red location represents the target, a blue
location – the wanderer and a blank location - a vacant
space.

Fig. 3. An example of a map.

As this algorithm considers also moving objects, whose
speeds and trajectories can change (with a reduced facto
of randomness), it can not guarantee that the target will be
reached. It will only end in success if the conditions that
will appear allow to there exists at least one way from the
initial position of the wanderer to the target.

3.1 Artificial Potential Fields

The algorithm proposed is based on the principle of
artificial potential field, more exactly, on attraction and
repulsion forces.

The scope of the wanderer is to reach the target. This
target is like an attraction pole for it, while the obstacles
are repulsion poles. In order to illustrate this in the path
finding algorithm, the target is considered to generate an

artificial field which induces an attraction force Fa, while
the obstacles generate repulsion fields that induce
repugnance forces Fr. These forces are strongest near their
generator, and grow weaker while moving away from it.

Three main ideas illustrate how these forces work and
how they generate each map position weight:

 The main goal is reaching the target;

ar FF (1)

 The repulsion forces are cumulative (p is the number
of obstacles in the operation space);

p

i

i
rr FF

0
 (2)

 Each node (position) weight is given by the
composition of all the forces applied to it (Wl
represents the weight of node l, Fa

l is the attraction
force generated in node l and Fr

l is the summed
repulsion force generated in node l).

p

i

li
r

l
a

l
r

l
al FFFFW

0

,

 (3)

Fig. 4. Weighted graph.

For example, the attraction force can be considered equal
to the diagonal of the map minus the distance to the target
(in steps), and the repulsion force equal to half of the
attraction force. Such a weighted mesh graph for the map
in Fig. 3. is shown in Fig. 4.

If such a method can prove to be sufficient for a static
environment, a dynamic one, with a degree of randomness

in it obstacles motion can be trickier to solve. It order to
try to find a suitable solution, the following algorithm is
applied:

 First compute the weighted graph for the initial
position;

 Compute the foreseen graph for the next step, based
on the initial motion information read from the input
file;

 Move accordingly;
 For the following steps:

o Check for collisions and target reach;
o Compare foreseen positions and speeds and

actual ones;
o If they are the same, keep the same algorithm,

otherwise make a new probable next graph
based on the history;

Always the shortest path, without collisions and cycles
will be tried.

3.2 Fuzzy System

The fuzzy system is basically based on the weights
computed using the artificial potential fields adapted with
the dynamic rules. That is, the rules composing the fuzzy
rule base are related to these weights and determine the
wanderer’s next move (Buckley, 2005).

The fuzzy system contains six rules, each of them
presenting one possible situation that the wanderer may
encounter. The fuzzy system is applied after creating an
initial path. In fact, only the next step may be computed,
the others having no importance.

These instructions would be followed exactly in a crisp
manner, using also the above algorithm. In a fuzzy system
like this one, each rule adds its influence to the final result
(Yen, 2000), specifically it adds (or subtracts) a few (or
many depending on the degree of satisfaction of that rule
for the current input) degrees to the angle that indicates
the next step to be taken.

The membership functions either use the Gaussian bell
form, thus probability density functions have been chosen
to represent them, or cumulative distribution or partial
probability density functions (whichever are more
appropriate).

The proposed algorithm uses singleton fuzzifier and
product inference engine, which easily eliminates the sup
part. The fuzzy system outputs a direction angle which
will be rounded to the nearest π/4 multiple.

4. FUZZY PATHFINDING FOR DYNAMIC
ENVIRONMENTS USING POTENTIAL FIELDS –

ENHANCED SIMULATION

Microsoft Visual C++ language and a proprietary
scripting language were used in order to implement the
above presented algorithm for fuzzy path finding using
artificial potential fields in a dynamic environment with
small degree of motion parameters variation.

All the required information for the algorithm simulation
is read from an input file. It has the following structure:

 The map dimensions, expressed as a multiple of
squares (basic motion unit);

 Initial positions for:
o Wanderer;
o Target;
o Obstacles (both still and moving);

 Wanderer speed;
 Motion parameters of the obstacles:

o Speeds;
o Directions;

 Degree of randomness in motion change
(recommended less than 10%).

The result of the algorithm is a real time simulation
presented in an enhanced 3D visual environment
constructed with the use of the developed graphic
simulation platform. For this functions from up-to-date
graphic libraries, more exactly Microsoft DirectX
libraries, were used (Luna, 2003).

The program is modular in order to permit easy
modifications of the functions and improvement by
adding new modules (for instance, to allow path finding
in a 3D dynamic environment).

A simulation example can be shortly seen in Fig. 5-7
(starting with the initial position, an intermediate position,
and a final position). As it can be seen, there are both
static and moving obstacles in the scene.

6. CONCLUSIONS

A realistic graphic multimedia platform was developed in
order to be able to simulate in a virtual environment both
engineering systems and other applications such as games
or educational applications. Also, a fuzzy path finding
using artificial potential fields algorithm for static
environments was enhanced to a dynamic environment
with multiple obstacles with low randomness in motion
change. This was added in order not to allow a pre-
computing of the path to the target and impose a real-time
simulation (Adams, 2003). This algorithm was used in
order to demonstrate the graphic platform capabilities and
it computes, if possible, a path from the initial position of
the wanderer to its target, using the weighted artificial
potential field approach.

The platform allows a user who is un-familiarized with
the advanced graphic techniques to build, at any point, his
own engineering applications. He can set their constraints
and visualize their graphic simulations in a very pleasant
and realistic manner. Also, this platform permits a graphic
programmer to properly test his algorithms, without being
concerned with the environment development.

Also, two significant aspects of the platform are its
innovative architecture and purpose and its
interdisciplinary character. It is important to point out the
educational side, as it can be used as a tool in e-learning
or in the regular teaching process, students being more
stimulated to lean from a real-time visual simulation.

Fig. 5. Initial position.

Fig. 6. Intermediate position.

Fig. 7. Final position – target reached.

The tools used for the enhanced graphics engine
development were:

 Microsoft Visual C++;
 Microsoft DirectX SDK graphic libraries.

The enhanced graphic engine contains a multi-lighting
system, a shader module, frustum culling for increased
efficiency, multi-texturing system and, of course, the
necessary pipeline to use all of these and more others.

The main design principle of the platform architecture
was modularity. Each set of functions with a specific goal
has its own module, and modules communicate with each
other through interfaces. This leads to the main advantage
of such a structure – extensibility.

As a future development, a standardization method to
define the inputs will be developed (for instance, the
definition of the kinematic and dynamic models). This
will allow an automatization of the use of this platform.
Also a unit testing can prove to be very efficient and can
be developed in the future.

Also, the path finding algorithm enhancement is intended
in order to provide solutions for dynamic environments
with motion based on behaviors, thus increasing the
interdisciplinary character (as a secondary result). A
separate branch of the enhancement is developing
algorithms for 3D discrete spaces.

 ACKNOWLEDGMENT

This work was supported by the strategic grant
POSDRU/89/1.5/S/61968, Project ID61968(2009), co-
financed by the European Social Fund within the Sectorial
Operational Program Human Resources Development
2007-2013

REFERENCES

Adams, A., (2003), Advanced animation with DirectX, The
Premier Press Game Development Publ.

Barraquand, J., Latombe, J.C., (1991), Robot motion planning: a
distributed representation approach, The International
Journal of Robotics Research.

Buckley, J., (2005), Studies in Fuzziness and Soft Computing,
Springer, Berlin.

Jungnickel, D., (2004), Graphs, Networks and Algorithms,
Springer, 2nd edition.

Kavraki, L., Latombe, J.C., (1994), Randomized preprocessing
of configuration space for fast path planning, IEEE Int.
Conference on Robotics and Automation.

Khatib, O., (1986), Real-time Obstacle Avoidance for
Manipulators and Mobile Robots, Int. Journal for Robotics
Research, (5)1, p90-98.

Luna, F., (2003), Introduction to 3D Game Programming with
DirectX 9.0, Wordware Publishing Inc.

Martinez, A., Tunstel, E., and Jamshidi, M., (1994), Fuzzy Logic
Based Collision Avoidance for a Mobile Robot, Robotica.

Sanchez, J., Canton, M., (2000), DirectX 3D Graphics
Programming Bible, IDG Books Wordwide.

Surmann, H., Huser, J., Wehking, J., (1996), Path planning for a
fuzzy controlled autonomous mobile robot, Fifth IEEE
International Conference on Fuzzy Systems, New Orleans.

Tarjan, R. E., (1987), Data Structures and Network Algorithms,
Society for Industrial & Applied Mathematics

Tunstel, E., Jamshidi, M., (1994), Fuzzy Logic and Behavior
Control Strategy for Autonomous Mobile Robot Mapping,
3rd IEEE Int. Conference on Fuzzy Systems.

Wang, L. X., (1997), A Course in Fuzzy Systems and Control,
Prentice Hall PTR.

Yen J., Langari R., (2000), Fuzzy logic, intelligence, control and
information, Prentice Hall, New York.

Tanasie, R.T., Cojocaru, D., Ivanescu, M., (2007), A Real-time
Solution for Target Reach in a Static Environment, 16th Int.
Conference On Control Systems and Computer Science.

