

Improving Fault Diagnosis for Wireless Sensor Network’s Data
using Support Vector Machines

Maria Muntean*, Honoriu Vălean**

*1 Decembrie 1918 University of Alba Iulia, Romania
 (e-mail: mmuntean@ uab.ro)

**Technical University of Cluj Napoca, Romania
(e-mail: Honoriu.Valean@aut.utcluj.ro)

Abstract: A problem arises in data mining, when classifying unbalanced datasets using Support Vector
Machines. Because of the uneven distribution and the soft margin of the classifier, the algorithm tries to
improve the general accuracy of classifying a dataset, and in this process it might misclassify a lot of
weakly represented classes, confusing their class instances as overshoot values that appear in the dataset,
and thus ignoring them. This paper introduces the Enhancer, a new algorithm that improves the Cost-
sensitive classification for Support Vector Machines, by multiplying in the training step the instances of
the underrepresented classes. We have discovered that by oversampling the instances of the class of
interest, we are helping the Support Vector Machine algorithm to overcome the soft margin. As an effect,
it classifies better future instances of this class of interest. The experiments were performed using real
data acquired from a monitoring sensor system, stored in three databases and replicated on an
aggregation server.
Keywords: Learning Algorithms, Classification, Accuracy, Improvement, Wireless Sensor Network

1. INTRODUCTION

Real-time monitoring data mining has been a necessary
means of improving operational efficiency, economic safety
and fault diagnosis of Wireless Sensor Network’s data. Along
with the rapid development of sensors and detection
technique and abundant signal sources, more and more data
are accumulated which provides a basis for fault diagnosis for
big machines.

Fault diagnosis is a pattern recognition process essentially.
First of all, the signal parameter is obtained in original space,
which is mapped into observation space to extract feature
vectors subsequently, the fault feature database is established,
and these vectors are input into classifier for fault diagnosis
(Yuan, 2011; Hong and Jing, 2011).

Proposed by Vapnik and his colleagues in 1990’s (Vapnik,
2000), SVM is a new machine learning method based on
Statistical Learning Theory and it is widely used in the area
of pattern recognition and probability density estimation due
to its simple structure and excellent learning performance.
Joachims validated its outstanding performance in the area of
text categorization in 1998 (Joachims, 1998). SVM can also
overcome the over fitting and under fitting problems (Hong et
al., 2009; Duan et al., 2009), and it has been used for
unbalanced data classification (Li et al., 2009; Xinfeng et al.,
2009).

The SVM technique is based on two class classification.
There are some methods used for classification in more than
two classes. Looking at the two dimensional problem we
actually want to find a line that “best” separates points in the
positive class from the points in the negative class. The
hyper plane is characterized by the decision function

))(,sgn()(bxwxf += φ , where w is the weight vector,
orthogonal to the hyper plane, b is a scalar that represents the
margin of the hyper plane, x is the current sample tested,

)(xφ is a function that transforms the input data into a higher
dimensional feature space and “,” representing the dot
product. Sgn is the signum function. If w has unit length, then

><)(, xw φ is the length of)(xφ along the direction of w.

To construct the SVM classifier one has to minimize the
norm of the weight vector w (where |||| w represents the
Euclidian norm) under the constraint that the training patterns
of each class reside on opposite sides of the separating
surface. The training part of the algorithm needs to find the
normal vector w that leads to the largest b of the hyper plane.
Since the input vectors enter the dual only in form of dot
products, the algorithm can be generalized to non-linear
classification by mapping the input data into a higher-
dimensional feature space via an a priori chosen non-linear
mapping function φ and construct a separating hyper plane
with the maximum margin.

In solving the quadratic optimization problem of the linear
SVM (i.e. when searching for a linear SVM in the new higher
dimensional space), the training tuples appear only in the
form of dot products, ><)(),(ji xx φφ , where)(xφ is simply

the nonlinear mapping function applied to transform the
training tuples. Expensive calculation of dot products

><)(),(ji xx φφ in a high-dimensional space can be avoided

by introducing a kernel function K:

)()(),(jiji xxxxK φφ ⋅= (1)

 The kernel trick can be applied since all feature vectors only
occur in dot products. The weight vectors than become an
expression in the feature space, and therefore φ will be the
function through which we represent the input vector in the
new space. Thus it is obtained the decision function having
the following form:

)),(sgn()(∑
ℜ∈

+=
i

iii bxxkyxf α

(2)

where iα represent the Lagrange multipliers and the samples

ix for which 0>iα are called Support Vectors (Han and
Kamber, 2006).

Because of the uneven distribution and the soft margin of the
SVM, the algorithm tries to improve the general accuracy of
classifying a dataset, and in this process it might misclassify
a lot of weakly represented classes.

This paper introduces an algorithm named Enhancer aimed
for increasing the TP of underrepresented classes of datasets,
using Cost-sensitive classification and SVM.

2. COST-SENSITIVE APPROACH

In actual applications, it exist the problems that wrong
classify result in different harm degree of different sort
sample. The solution proposed in literature is the Cost-
sensitive SVM approach (He and Garcia, 2009; Dai et al.,
2009; Santos-Rodriguez et al., 2009), a new method for
unbalanced classification.

Fundamental to the Cost-sensitive learning methodology is
the concept of the cost matrix. This approach takes the
classify cost into account, and it aims to reduce the classify
cost to the least. Instead of creating balanced data
distributions through different sampling strategies, Cost-
sensitive learning targets the unbalanced learning problem by
using different cost matrices that describe the costs for
misclassifying any particular dataset. A very useful tool, the
Confusion Matrix for two classes is shown in Table 1.

The true positives (TP) and true negatives (TN) are correct
classifications. A false positive (FP) occurs when the
outcome is incorrectly predicted as 1 (or positive) when it is
actually 0 (negative). A false negative (FN) occurs when the
outcome is incorrectly predicted as negative when it is
actually positive.

Table 1. Confusion Matrix for a two-class problem

Predicted Class

Cls= 1 Cls= 0

Cls= 1 TP FN Actual
Class Cls= 0 FP TF

The true positives (TP) and true negatives (TN) are correct
classifications. A false positive (FP) occurs when the
outcome is incorrectly predicted as 1 (or positive) when it is
actually 0 (negative). A false negative (FN) occurs when the
outcome is incorrectly predicted as negative when it is
actually positive.

In addition, the accuracy measure may be defined. It
represents the ratio between correctly classified instances and
the sum of all instances classified, both correct and incorrect
ones. The above measure was defined as:

FNFPTNTP
TNTPAcc

+++
+

= (3)

More precisely, the classification gives equal importance to
all the misclassified data (false negatives and false positives
are equally significant). The Cost-sensitive classifications
strive to minimize the total cost of the errors made by a
misclassification, rather than the total amount of
misclassified data.

Using the measures defined above, we calculated the
accuracy mean, the true positives mean, and also the accuracy
deviation and the true positives deviation:

TIMESNAccAccMean
TIMESN

i
i _/)(

_

0
∑

=

= (4)

TIMESNTPTPMean
TIMESN

i
i _/)(

_

0
∑

=

= (5)

TIMESNAccAccMeanonAccDeviati i

TIMESN

i
_/)(2

_

0
−= ∑

=

 (6)

TIMESNTPTPMeannTPDeviatio i

TIMESN

i
_/)(2

_

0
−= ∑

=

 (7)

3. DESCRIPTION OF THE ENHANCER

Experimentally we have found out that the features that help
in raising the TP of a class are the cost matrix and the amount
of instances that the class has. The last one can be modified
by multiplying the number of instances of that class that the
dataset initially has.

The algorithm proposed for increasing the TP of weakly
represented classes, the Enhancer is detailed in the following
pseudo code:

1. Read and validate input;
2. For all the classes that are not well represented:

 BEGIN
 Evaluate class with no attribute added
 Evaluate class at Max multiplication rate
 Evaluate the class at Half multiplication

REPEAT
 Flag = False

Evaluate the intervals (beginning, middle),
 (middle, end)

If the end condition is met
(i.e. If the difference between the beginning and the
end of an interval is very small, under a set epsilon
AND

 If μ≥Δ+Δ || AccTPi ,

 where)(inTPDeviatioonAccDeviati +=μ)

 Flag = True
If the first interval has better results we should use
this, otherwise the other
Find the class evaluation after multiplying class
instances middle times
UNTIL Flag = False
END

3. Multiply all the classes with the best factor obtained;
4. Evaluate dataset.
While reading and validating the input we collected from the
command line the parameters that were used by this
classifier, together with the classifier parameters that were
usually transmitted to the program. The input parameters
needed were the number of the class that needs to have its TP
improved and the ε that is the maximum allowed difference
between the evaluation of the two intervals (beginning,
middle) and (middle, end).

Our classifier had also as input parameters the multiplicands
that the optimization algorithm had used. There are available
two kinds of evaluations that also accept class multiplication:

• Evaluating a dataset with only the instances of one class
being multiplied, and keeping the other still to their initial
value. This kind of operation was especially useful when we
tried to find out what was the best multiplicand for a certain
class.

• Evaluation of a dataset where the instances of all classes
could undergo a multiplication process. The multiplication of
the classes could be any real number greater or equal to 1. If
the multiplicand was 1, then the class remained with the
initial number of instance.

One of the most important parts in this pseudo code is
knowing what, when, and how to evaluate data set, in order
to maximize efficiency of the algorithm. This problem only
appears when the search for the perfect number to be used as
a multiplier for a certain class is not assisted by the human
component.

It is also important to avoid performing the evaluation on
data that the algorithm used to train the model on, because
otherwise the algorithm is going to over fit on this particular
dataset, and when new data is going to be introduced to be
tested, the results are going to be disastrous. This way of
evaluation is the 10 fold cross validation. Like this the dataset
is being randomized, and stratified using an integer seed that
takes values in the range 1-10. The algorithm performs 10
times the evaluation of the data set, and all the time has a
different test set (Fig. 1).

Fig. 1. 10 fold cross validation
So, after performing the stratification, each time the data set
was split into the training and test set, the Enhancer took the
training set and applied classMultiply() on it. Like this the in-
stances that were going to be multiplied were not going to be
among that data that was going to test the result of the SMO
model, the Weka implementation of SVM. The performance
of the algorithm is only due to the multiplied data, and there
is no over fitting to this specific data set. The data was trained
in order to be evaluated as accurately as possible by a general
test set, and not only by the one for testing.

The instances were multiplied using the properties of the In-
stances object in which they were stored following this
pseudo code:

1 aux← all instances of class x from dataset
2 for i=0 to max do
3 add (instance from aux to dataset)
4 Randomize dataset

By performing this series of operations the number of in-
stances of the desired class was multiplied by the desired
amount and in the same time we had a good distribution of
instances inside the dataset in order not to harm or benefit
any of the classes in the new dataset.

In order to see what the best improvement is, we need to
calculate an ending property of the logarithm. After some
experiments the conclusion was that we must optimize the TP
and in the same time keep the accuracy as high as possible.
This can be translated as follows:

max=Δ+Δ= CCi ATPϕ (8)

This means that we are trying all the time to maximize the TP
of classes and also the Accuracy. The only flaw in this
equation is the Accuracy is medium (50%) and the TP of that
certain class is really close to 0. If realize to get the TP of the
class as high as 80-90%, the loss in the accuracy, that is
going to appear inevitably, is going to pass unnoticed by this

function. That is why we needed to introduce the following
constraint: θ>Δ CCA , where θ is the minimum allowed drop
in the accuracy.

The Enhancer algorithm described in the pseudo code used a
Divide et Impera technique, that searched in the space (0
multiplication – max multiplication) for the optimal
multiplier for the class. The algorithm is going to stop its
search under two circumstances:

• The granulation is getting to thin, i.e., the difference
between the beginning and end of an interval is very small
(under a set epsilon). This constraint is set, in order not to let
the algorithm wonder around searching for solutions that vary
one from another by a very small number (<10-2).
• The modulus of the difference between the CCi ATP Δ+Δ from
the first and the second interval should be bigger that a
known value. This value is the considered to be the deviation
of the Accuracy added to the deviation of the TP of that class:

TPACC σσμ += (9)

After finding the best multiplicand for the class that we are
trying to optimize, we constructed a training set that
contained each class instances multiplied by the optimal
multiplicand found at the previous step. A fine tuning was
performed on the multiplicands of each of the other weakly
represented classes, in order to raise the accuracy and the TP
of the other classes while keeping the TP of the interested
class at least at the same value that the algorithm retrieved.

4. EXPERIMENTAL RESULTS

4.1. The autonomous measuring system description

Classification of sensory data is a major research problem in
wireless sensor networks and it can be widely used in
reducing the data transmission in wireless sensor networks
effectively and also in process monitoring.
In our wind energy monitoring, sensor node monitors six
attributes: speed, direction, temperature, pressure, humidity,
and battery voltage.
The autonomous measuring system used for the estimation of
wind energy is composed by:
• a measurement tower 85 meters height, with assembly

and structure accessories (guy wires, anchors, clamping
fixture, auxiliary masts, mounting plate, aviation light
and/or beaconing) (Fig. 2);

• four Thies first class wind speed sensors (V1, V2, V3,
V4, depending upon climatic conditions with heating);

• two Vilmers wind direction sensors D1 respectively D2;
• two temperature sensors with shielding T1, T2;
• one barometric pressure sensor P1;
• one relative humidity sensor H Energy Supply System

consist on PV-Module, Voltage-regulator, 12V Battery, in
lockable steel cabinet;

• wireless data transmission system (GSM-Modem +
1xCampbell CR1000 data logger inclusive leads).

Fig. 2. The measurement tower
The sensors are distributed on the entire measurement tower
(Fig. 3).

Fig. 3. Sensors distribution on the measurement tower

The wind speed sensors are designed for the measurement of
the horizontal component of the wind speed in the fields of
meteorology and environmental protection and the wind
direction transmitter serves for the detection of the horizontal
wind direction. Some special characteristics are: high level of

measuring accuracy and resolution, high damping ratio at a
small delay distance, low starting threshold and magnetic
coupling, which is free of wear. The temperature and pressure
sensors measure the temperature and relative humidity of the
ambient air. A radiation shield protects the sensor against rain
and solar radiation. The humidity sensor is design for
measurement of the humidity of the air. The U_Batt sensor
measures the battery voltage values, and PTemp_C registers
the temperature from the lockable steel cabinet (Fig. 4).

Fig. 4. The lockable steel cabinet

4.2 The distributed database replication
Our distributed database system includes three servers
situated on three geographic remote sites. Each server has a
client with insert rights (Fig. 5).

Fig. 5. The distributed database replication schema

All three databases contain the information acquired from the
sensors and are replicated on an aggregation server. This
server has a client with select rights. On this machine is
running our proposed algorithm that detects the anomaly
values from the aggregated database.

4.3 The database description
The experiments performed in this paper evaluate data
obtained from our wireless sensor network and accumulated
in the period 1-31 May 2010.
The diagram of one database and a brief description of the
aggregated dataset are presented in Fig. 6 and Table 2.

Fig. 6. The structure of one database

Table 2. The dataset used in the experiments

Dataset No. of
attributes

No. of
instances

Attributes
types

Aggregated
dataset

4+1 17280 Num, Nom

The class distribution for the dataset is illustrated below (Fig.
7):

59%

41%

Dataset class distribution

Class 0

Class 1

Fig. 7. The aggregated dataset class distribution
In order to improve the classification of the weakly
represented class in this dataset, in which they are in very
small numbers with respect to the other classes, two
approaches were tested:

• Cost-sensitive classification;
• Multiplication of the instances of weakly represented
classes.

4.4 Cost-sensitive classification
In the case of the Cost-sensitive classification, the main aim
was to find a good cost matrix, to increase the cost of
wrongly classified instances that belong to the weakly
represented class, in our case to the anomaly class. In order to
perform this, we used the Cost-Sensitive Classifier that can

be found in Weka.classifiers.meta on the dataset described
above as follows:
• We have set as cost matrix the default cost matrix (0 on the
main diagonal and 1 in rest);
• We evaluated the dataset;
• We “fixed” the cost matrix, to increase the cost of the
wrongly classified instances where the Confusion Matrix
indicated FN, to force the algorithm to correctly classify
those instances as well.
 • We re-evaluated the dataset and redid the previous step.
By modifying the Cost Matrix, we obtained a variation quite
high in the TP of Class 1 (60%-92%, Fig. 8). The accuracy of
classification took values between 84% and 93%. This class
has 7128 instances from the total of 17280 that are available
in the dataset.

0,000

0,200

0,400

0,600

0,800

1,000

1 2 3 4 5 6 7

Acc

TP Cls 1

Fig. 8. Class 1 TP variation with respect to Cost Matrix
change

Cost-sensitive classification proved to be a good method of
improving the TP of the unbalanced classes in the dataset that
were weakly connected with one-another.

When the instances of certain classes were not correctly
identified, this could be because of the soft margin of the
SVMs, which were interpreted that the instances of the
weakly represented classes are just few errors in the
classification of the larger classes.

4.5 Multiplying underrepresented classes
In order to improve the classification of one class of interest
from the training dataset using SVM, we needed to improve
its chances of being recognized. In order to recognize classes,
SVM needed support vectors from those classes and that’s
why we had increased the number of instances of a weakly
represented class and in the same time we had kept the value
of the other classes constant. First, we tried to find out what
is the best multiplier to use for the anomaly class and how
much did it affect the rest of the evaluation.

After applying the class multiplications all the TP of Class 1
hits a zone of instability, until the multiplying factor reached
1.0, when the TP ascent stabilized. The accuracy of the Class
1 reached 0.91 for the TP value equal to 100%, meaning a
comparable value as the ones obtained using only the Cost-
sensitive classification (Fig. 9).

0,86

0,88

0,9

0,92

0,94

0,96

0,98

1

1,02

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

Acc

TP

Fig. 9. The evolution of the TP of Class 1 and the general
accuracy with respect to the number of instances of Class 1

So, the Enhancer multiplied the information accordingly,

such that to maximize CCi ATP Δ+Δ , so the accuracy does not
fall below a set ε. We set ε to 0.05 (5%) and we concluded
that with the new algorithm, the TP of a certain class of
interest was increased significantly while keeping the general
accuracy in the desired range (Fig. 10).

0,860
0,880
0,900
0,920
0,940
0,960
0,980
1,000

Cost-Sensitive
SMO

Enhancer

Acc Class 1

Fig. 10. Comparison between the TP of the class 1 resulting
Cost-sensitive SMO Evaluation and with the Enhancer

We observed that the last classifier performs the best and the
Enhancer algorithm could have pointed even more accurately
the instances that belong to the class of interest, but with the
downside of pulling the general accuracy below the threshold
preset ε.

The cost matrices that was used here is the best one found in
the evaluation step. The rows are read as “classified as”, and
columns as “actual class” (Table 3).

Table 3. The cost matrix used

Cls 0 Cls 1

0.0 3.0 Cls 0

2.0 0.0 Cls 1

5. CONCLUSIONS

This paper is focused on providing the Enhancer, a viable
algorithm for improving the SVM classification of
unbalanced datasets.

Most of the times, in unbalanced data sets, the classifiers
have a tendency of classifying in a very accurate manner the
instances belonging to the best represented classes and do a
sloppy job with the rest. In order to overcome this problem
we have developed the new classifying algorithm that can
classify the instances of a class of interest better than the
classification of the usual SVM algorithm. All of this is
happening while keeping the accuracy at an acceptable level.

The algorithm improves the classification of the weakly
represented class of the dataset. The idea of multiplying the
unrepresented classes is original and came from the
experimental work. We have also discovered that by over
sampling the instances of the class of interest, we are helping
the SVM algorithm to overcome the soft margin. As an
effect, it classifies better future instances of this class of
interest.

The algorithm improves the classification of the weakly
represented class in the dataset and it can be used for fault
diagnosis in Wireless Sensor Network’s data. This solution is
especially important when it is far more important to classify
the instances of a class correctly, and if in this process we
might classify some of the other instances as belonging to
this class we do not produce any harm.

As a future work, we propose to maximize accuracy with
geometric mean metric in order to balance both classes at the
same time. This evaluation measure will allow us to
simultaneously maximize the accuracy in positive and
negative examples with a favourable trade-off.

REFERENCES

Dai, Y., Chen, H., and Peng, T. (2009). Cost-sensitive
Support Vector Machine based on weighted attribute,
2009 Int. Forum on Information Technology and
Applications, pp. 690-692, 15-17, May, 2009, Chengdu,
China.

Duan, X., Shan, G., and Zhang, Q. (2009). Design of a two
layers Support Vector Machine for classification, 2009
Second Int. Conf. on Information and Computing
Science, pp. 247-250, May, 21-22, 2009, Manchester,
UK.

Garcia, S., Fernandez, A., and Herrera, F. (2009). Enhancing
the effectiveness and interpretability of decision tree and
rule induction classifiers with evolutionary training set
selection over imbalanced problems, Applied Soft
Computing 9 (2009), 1304–1314, Elsevier, 2009.

Han J. and Kamber, M. (2006). Data Mining: Concepts and
Techniques, Second Edition, Morgan Kaufmann Press,
Elsevier Inc, San Francisco, 2006, pp. 337.

He, H. and Garcia, E. A. (2009). Learning from imbalanced
data, IEEE Transactions on Knowledge and Data
Engineering, VOL. 21, NO. 9, September, 2009.

Hong, S., Jing, W., Fault Diagnosis of Aeroengine Sensor
Based on Support Vector Machine, 2011 Third
International Conference on Measuring Technology and
Mechatronics Automation, pp. 186-189, 6-7, January,
2011, Shanghai, China.

Hong, M., Yanchun, G., Yujie, W., and Xiaoying, L. (2009).
Study on classification method based on Support Vector
Machine, 2009 First International Workshop on
Education Technology and Computer Science, pp.369-
373, March, 7-8, 2009, Wuhan, China.

Joachims, I. (1998). Text categorization with Support Vector
Machines: Learning with many relevant features,
Proceedings of the European Conference on Machine
Learning, Berlin: Springer, 1998.

Li, Y., Danrui, X., and Zhe, D. (2009). A new method of
Support Vector Machine for class imbalance problem,
2009 International Joint Conference on Computational
Sciences and Optimization, pp. 904-907, April 24-26,
2009, Hainan Island, China.

Santos-Rodriguez, R., Garcia-Garcia, D., and Cid-Sueiro, J.
(2009). Cost-sensitive classification based on Bregman
divergences for medical diagnosis, 2009 International
Conference on Machine Learning and Applications, pp.
551-556, 13-15, December, 2009, Florida, USA.

Vapnik, V N. (2000). The nature of statistical learning
theory, New York: Springer-Verlag, 2000.

Xinfeng, Z., Xiaozhao, X., Yiheng, C., and Yaowei, L.
(2009). A weighted hyper-sphere SVM, 2009 Fifth
International Conference on Natural Computation, pp.
574-577, 14-16, August, 2009, Tianjin, China.

Yuan, H., The Fault Diagnosis Research on Nonlinear
Feature Extraction with Kernel Technology, 2011 Third
International Conference on Measuring Technology and
Mechatronics Automation, pp. 811-814, 6-7, January,
2011, Shanghai, China.

