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Abstract: It is considered an overview of the frequency domain ineitjgalfor the absolute stability
of the systems with monotone and slope restricted nonlitiesr It appears that the same type of
multiplier is associated with different augmentationstoé state space and this fact explains various
additional assumptions accompanying the stability inétigs. These inequalities are applied to the
PIO Il problem in aircraft dynamics where the feedback strrecof the absolute stability contains the
saturation nonlinearity which is both non-decreasing doplesrestricted.
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1. THE STARTING POINTS OF THE PROBLEM
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. . — He(s) — < Hy(s)
We shall start from the standard system of ordinary difféa¢n s
equations : )
X = Ax— bg(c*X) (1)
where the state vectarhas dimensiom, ¢ : R — R is a scalar
continuous function and the constant coefficieitd, ¢ have
appropriate dimensions. _ . .
pprop Fig. 1. System with rate limiter
A. We assume thap is a sector restricted nonlinear function _
i.e. that it is subject to X=Ax+bpy(t) , v =c'x; @)
©) Va=@(l) 5 2 = V1, fh=—V2
plo -~ i
< 7 <@, p0)=0 ) (see also Fig.2)
. i . . . o
Obviously (2) defines an entire class of functions; sincenheac u L

function of this class defines a system (1) when considered in

its equations, one may say that (1) - (2) define an entire ofass =
nonlinear systems. Singg#0) = 0 these systems haxe= 0 (the

equilibrium at the origin) as solution. Asymptotic statyilpf

this equilibrium is a standard problem of the Liapunov tlyeor N
Less standard is the requirement that global asymptotidisya
should hold for all nonlinear functions subject to (2). This
is some kind of robustness of the stability and, following arFig. 2. Absolute stability feedback structure.
almost 70 years tradition, Bulgakov (194apsolute stability

A

. — A straightforward approach to take in the PIO Il problem is
We mention here one of the most recent applications of atBsolyp, ¢ of the absolute stability - Rasvan and Danciu (2010}, B
a problem occurs from the beginning- that of the sharpness of

stability is the so-called PIO Il problem in aircraft dynasi
the P(ilot) I(n-the-loop) O(scillations) of the secondemliry,  he resyits. Saturation is a specific sector restrictecimeality
while the absolute stability techniques are valid for arirent

defined by the activation of the position and rate limitefss t
means that in the feedback structure composed of the aiefragy s for nonlinearities, hence the stability conditiorits lae
only sufficient i.e. lacking enough sharpness.

and the pilot dynamics, a nonlinearity of the saturationetyp
occurs (Fig. 1)

B. The sharpness problem of the absolute stability approaches
fas been considered from its early days. The so-ca#lleelr-
3f4n conjectureAizerman (1949), says that the maximal ab-
solute stability sector (2) coincides with the Hurwitz sect

* This work was supported by CNCSIS-UESFISCSU project nurieil - the linear stability sector corresponding ¢9o) = ho. This

IDEI 95/2007 conjecture is valid for first order systems £ 1), also for

The saturation function is of sector restricted type. On th
other hand system (1) may be viewed as describing a feedb
structure composed of a linear and a nonlinear block asvsllo




second order systema £ 2) except some limit situations as P
that described by a counter example due to Krasovskii (1952)XBW(S) =Y 5 w 7
but was clearly disproved for third order systems=(3) by Z S+pPj+pPj
a celebrated counter example due to V. A. Pliss around 1957, ) ) N
Pliss (1958). Approximately around the same date KalmaBut Bo may be even improper: in fact the oldest stability
(1957) started another conjecture: the Hurwitz stabiligtsr ~Multiplier - the Popov multiplier - is improper since it resad
coincides with the maximal sector of absolute stability tfoe
so-called shape restricted nonlinear functions satigfyin

5JZO;PJ/>07P"JZO (5)

Xe(s) = a+Bs ©)

= being thus a PD multiplier. ObviouslB;? is in this case a

v<¢(o)<v (4) strictly proper linear block. While the 'Pheory of the abgelu
Slope restrictions clearly make the class of nonlinearitiore ~ Stability based on non-causal multipliers has attractedeso
narrow hence the result of Barabanov (1988) proving the v&€searchers in the 70ies of the 20th century, only a few of the
lidity of this conjecture for third order systems was someho Cfiteria obtained a t_)roader use. The oldest of these @iteri
expected; at the same time i.e. in the same paper a procedtiiat due to Yakubovich (1962): it correspondgte- 0 and has
for constructing fourth order counterexamples to Kalman-co the form
jecture was proposed. Both conjectures disproved, thestdlis

room for applications of the problem they generated: tothest 1

sharpness of any method applied in absolute stability by-com 41 (—+ Dex(lw)) + 120e lwx (1) +

parison between the Hurwitz sector and the nonlinear stabil ¢ (7)
sector provided by that method. The aim of this paper is to +130?0e(1+ vX(—10)) (14 VX (1w)) > 0

contribute to these methodological aspects in the caseeof th. . .

slope restrictions where several absolute stability gateave With X (s) = ¢*(sl—A)~“band for some real numbers 7; > 0,

been worked out. All of them have in common the so-called® = 0-

technique of the augmented state space Barabanov (2000). Qadditionally we takev = 0 i.e. the admissible functions are

approach will be however an engineering one, based on frgso non-decreasing then (7) becomes:

guency domain inequalities, frequency domain charatiesis

and frequency domain stability multipliers. The hypersigh I

theory, Popov (1973), is furnishing a philosophy as follotas Oe(n1+ lw+ Tng)x(lw) 1y T300° > 0 (8)

cope with "the usual point of view of the control engineer who ) 9

likes to have at his disposal a wide range of elements capaldigd one may recognize the multiplier

of being combined in various ways to form control systems as

complex as desired, but who does not like to burden his exeati _ =

imagination with instability problems” Popov (1973), pagie 2(9) =1+ 25— TaVS° ©)
The next criterion was concerned with slope restrictiony,on

2 ABOUT THE STABILITY MULTIPLIERS see Barabanpv and Yakubovich (1979), i.e. only the_ re'c_ctrist

(4) are taken into account. The frequency domain criteaées

the form
We shall follow here the way of Krasovskii (1978): starting

from the basic structure of Fig. 2 we perform equivalence
transformations of it. Consider the equivalent structurgig. _ = _r >
Oe{ (141X (—10)(1+ VX (1) — —x(1) } 20 (10)

and ifv = 0 then (10) becomes

De(1+\7x(|w)—%)x(|w)) >0 (11)

which suggest the PI multiplier

Z(s):\7—£:\7(1—:—) (12)

This multiplier is causal. Several years later the same wase
considered in Singh (1984)with a multi- variable countetrpa
Haddad and Kapila (1995), Haddad (1997); the slope restric-
tions were(0,v) and the frequency domain inequality was of

specified we have obviously the same inequality.

If Bg is a linear proper (causal) block, its inverse is also a prop&oreover, if we taker; = 0 in (8) and divide the inequality
i.e. causal block. This is the case, for instance, with tioelol by w? > 0 we rediscover (11). It appears that from the point
describing the so-called Brockett Willems multiplier, véigo of view of the frequency domain inequality all criteria are
transfer function is identical. There exist however several differences cotatec



with proof techniques and they introduce additional assump *a—1 *a—1 _
tions which have corresponding effects on the practicéiliia (1) —CA ) — CATbR({(1)) = const (22)
conditions. Not only that (15) are the simplest in defining the new state
variables but also the “return” to the basic system ((i3)
3. THE AUGMENTED SYSTEMS the associated prime integral generating a family of irarri

. _ sets is much simpler. This suggests, especially when thinki
We mention from the beginning that a good overall referesce |5 the assumption dek £ 0 that slope restrictions are taken

Barabanov (2000). Here we focus on the systems associaiaf}, account in a more natural way if considered togetheh wit
to the cases described in the previous section. In the ca$g sector restrictions.

of Yakubovich (1965a,b) (in fact this was mentioned even in
Yakubovich (1962)) the augmented system was defined by the

state variables 4. SOME APPLICATIONS

Several applications with purely mathematical charactay m

z=x, {=-¢(c'x) (13)  be found in Barbalat and Halanay (1970, 1971, 1974), Rasva
what sends to then + 1)-dimensional system (2007).
A. We consider first the previously mentioned celebrated coun-
z=Az+b{ terexample of Pliss. In this case the transfer function ef th
) (14) linear partis
{ = —¢/(c"7)c* (Az+b)
Obviously this system has the prime integral __1 s—-1 a>o0 23
XO=giratgr1?” (23)
Z(t)+ @(c*z(t)) = const (15) which is irreducible and has two poles dR. It is quite easily

L _ _checked that the Hurwitz sector is given byth < (1+a)/a.
hence its dimension may be reduced by one; moreover if thgsnsequently the maximal achievable result for the absolut
solutions of (14) are viewed on the invariantget ¢(c*z2) =0  stapility sector is subjecttp > v >0 andp < v < (1+a)/a.

- suggested by (13) - ther(t) = x(t) providedz(0) = x(0). -

This extended system was considered in Barbalat and Halartdere as elsewhere we shall follow the philosophy of some

(1974) for the case of several nonlinear functions. Comsider ~ parsimony principleto use as few free parameters as necessary

the approach of Barabanov and Yakubovich (1979); here thee. the stability multiplier should be as simple as possibl

new state variables are We are guided by our experience which “tells” that more free
parameters are in use, more difficult is to manipulated threm i

a reasonable way.
2= Ax—bp(C'X) , { = —(cX) (16) y

) ) o _ Application of the Popov criterion requires to take in {4)= 0
and unlike (13) here= x. From here the following is obtained tg find

F= Az b a7 1 1 1 0 1+ w0
- +a+w + w
{=u(t), pt) = —@(cx(t)c'z o TRl TI00X(0) = ot e 1 20
. e (24)
If det A 0 then we may compute’x = c*A Yz-bl)to The only choice fo is 8 = —1 to find
obtain thén+ 1)-dimensional system
7=Az+h p<1/2<(1+a)/a
. 18
{=—¢(c'A Y (z—bQ))c'z (18) Next, the case when only slope restrictions are taken into
account does not apply for the Yakubovich criterion since it
with the prime integral would require in (7) bothry = 1, = 0, the inequality thus

lacking any free parameter. Consequently we shall consider
both sector and slope restrictions:

(_0:\710, \7:00, 9:T2/T1, B:T3/T1
?hen(?)reads

Z(t)+ @(c*AY(z(t) —bZ(t))) = const (19)

The third approach of Singh (1984), Haddad and Kapila (199
is based on “differentiating the initial system”; this mean

1
z=Ax—bg(c’x) , { =c*x (20) 6+ Oe(1+1w0+ Bw?)x(1w) >0 (25)
hence that is
_ 1 (1+a)(1+w’B)+6u* 1+w*(B+6) -0
z=Az—b¢/({)c'z 1 ® (1+a)2+ w? 1—2 =
Z —c'z and a necessary choicefis+ 6 = —1 hencef = -1— 3 < 0.

Further an elementary computation shows that by choosing
with the prime integral B > 2/a the inequality (25) holds provided/ —a/(1+



a) > 0 what recovers the Hurwitz sector for all non-decreasing —  Agpr+ (Aqg— p1) WP
nonlinear functions of this sector. 6= B (Aqp1+ 2 — Aq) 0

(34)

B. The next application accounts for a preliminary computatio )

for PIO Il prevention in the short period longitudinal matio Where we denoteg; = &, — Mg > 0, wy = Agéy — Mg > 0.
of the so-called ADMIRE standard model. With the specifidhis choice and the fact th&t> 0 gives

notations we have

. 002 —2
& — Mg& — Mg —Ms& =0 De(1+|w9)x(|w9):m >0, Vo (35)

. _ (26) W+ pi
= —kga — kg0 —
& = @e(—ka ka &) Since the entire Hurwitz sector has been recovered, we éeduc
with a - the incidence angle and; - the control deflection

that (26) is absolutely stable in the secigf, ). But this
angle. The functiony(¢) is the saturation function sector is “violated” by the specific nonlinear function (27)

We are thus stressed to find an invariant set of the state space
where this sector is not violated. From the graphical camlit

VLo, el>e |e| <VL/y; the following condition is obtained
pe)=q9 W (27)
—& |£| S &L . 2 2
& (ka@ +kg& + )2 < (VL /y2) (36)

In order to estimate the Hurwitz sector we takéo) = Yo and we need the largest invariant set included in (36). Thet mo

with y > 0. The characteristic equation of the linear system thugt hand” invariant sets have the foivt(x) < ¢ wherex is the

obtained is state vectoly : R — R, a suitable Liapunov function arut> 0
the largest possible such that

D(A) = A3 4 (wey — Mg)A? + (wey(Mskq — Mg) — Ma)A +

+wey(Mskg — Mg) =0 {sup{xeRszv(x)<c}}c
Mo ) (28) c>0 (37)
Sinceky > 0,kq > 0, Mg < O we shall havég = Mskq— Mg > 0 C{XxeR®: (ka0 + kgt + ) < (VL/y4)?}

from the first Stodola inequality. The Hurwitz sector will be
defined bywy > &,, where &, is the positive root of the
trinomial

Paradoxically, we need here a Liapunov function while in

aircraft dynamics and PIO analysis all available data are ex

pressed in the frequency domain. Fortunately we may use the

Yakubovich Kalman Popov lemma to associate to the frequency
AqEZ — (Mg +AqMq +Ag)é +MgMq =0 (29) ;jomain inequality (33) - and (35) - a Liapunov function of the

orm
We “rotate” the sector by introducing
c*X

V(X) = X*Hx+ 6 o)A (38)

¢(0) =—y,0—-Y(-0) (30) _
. where6 > 0 is that of (34) whileH is a result of solving some
wherewsy; = &;. We obtain in this way a feedback Structure ;. aar Matrix Inequali(ties). g

as in Fig.2 with the nonlinear function subject to
C. Another application is the analysis of the PIO Il proneness
for the roll attitude of the lateral directional motion of argeric

Yy < m <y + A vy <@ (0)<—y + A aircraft, see Klyde et al. (1995). The mathematical modsdse
g = &L ’ - &L
(31) .1
+—@=L
and the transfer function of the linear part of the form ¢ TR(p a%

_ _ (39)
0a = welP(—Kp® — Kpp — 8a)

S+ AS+Ay _ , ,
St & —Mg)(S 1 AqZr —Mq) (32) whereg is the bank angle and, the aileron deflection angle;
+ a9 + a Y(-) is again given by (27). The transfer function of the linear

This transfer function has minimal phase, a real negative poPart is
and a pair of poles onR. Considering the Popov frequency
domain inequality

X(S):we(

ko +k
1 M) (40)

X(s) = ce <§ g

hence it is in the critical case of the double pole. The Popov
criterion holds for the “infinite” parameter i.e. for

Oe(1410w0)x(108) >0 (33)

accounting for a possible infinite absolute stability se¢tioat
recovers the entire Hurwitz sector), the pair of imaginaskep

gives the unique choice of T2002 14 LaTo(Kn — k. T
wimy(1w) >0 < R i +2 ; R(ks ~ koTe)
Trw*+1

>0 (41)
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1+ LaTr(kp — kgTR) > 0 (42)
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