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Abstract: In this moment we have many diabetes patients with poor control of blood glucose. 
Some authors consider that the closed-loop system (artificial pancreas) is the best solution. An 
extra-corporeal blood glucose sensor is coupled to a pump, which controls the rate of infusion of 
insulin so as to maintain normoglycaemia. The continuous glucose monitoring system uses other 
sensors for the measuring of the blood glucose, placed under or on the skin. One of the most 
dangerous situations, having severe consequences on a patient’s state is the introduction of 
incorrect values in the management system, responsible for all decisions and the control of the 
pump. For this reason it is necessary that each sample of blood glucose must be passed through a 
validation process. Therefore, it is very important that the transducers are in proper working 
condition. If one of the transducers provides inaccurate data, it must be quickly removed and 
replaced. The fault detection and isolation (FDI) problem is an inherently complex one. The 
author proposes an analytical method to detect and locate the presence of sensor failures using 
stochastic signal processing. The results of this study can also be applied to other physiological 
systems, offering important data for the medical practice and contributing to the introduction of 
computer assisted diagnosis, as a regular medical practice. These findings may have significant 
clinical implications in the diagnosis of diabetes mellitus, in blood glucose monitoring and in the 
management of diabetes therapy. 
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1. INTRODUCTION 

The information about physiological blood glucose 
control and the physiopathology of diabetes mellitus 
could be subtracted with proper mathematical methods 
from acquired experimental data. The sources of blood 
glucose are: the gut in the digestive states, post absorptive 
of the meal and the liver in the inter-digestive states. The 
blood glucose is used in all cells under the absolute 
control of insulin (exceptions: red blood cells and 
neurons). Therefore, the medical concept in the diabetes 
management was focused on the insulin dynamics and 
insulin therapy. Physiologically, insulin stimulates 
glucose uptake by insulin sensitive tissue (mainly skeletal 
muscle and adipose tissue) and inhibits hepatic glucose 
production. Insulin secretion is an important oscillatory 
process and insulin oscillations are followed by plasma 
glucose oscillations. The normal pattern of insulin 
secretion rate displays (Iancu, 2003), (Troisi, 2000): 
 Very rapid oscillations occurring at 10 second 

intervals, related to molecular intracellular processes; 
 Rapid oscillations occurring from 8 to 15 minutes;  
 Slow oscillations occurring at 90 to 120 minutes; 
 Circadian oscillations related to cortisol circadian 

rhythm and growth hormone secretion after sleep; 
Rapid and slow oscillations are still a controversial 
subject of experimental studies, but they are certainly 

related to the insulin glucose control system. All studies 
show the oscillatory feature of the long term blood 
glucose recordings (Makroglou, 2006). Also, in the blood 
glucose control, counter regulatory hormones intercede: 
glucagon, catecholamine, cortisol and growth hormones, 
which increase the concentration of blood glucose by 
stimulating the production of hepatic glucose and/or 
inhibiting tissue glucose uptake. The glucose values are 
registered in a discrete manner by intermitted 
measurements. The sample rate must be adapted for the 
specific dynamics of the biological parameters used for 
the experimental recordings. The actual protocols used in 
diagnosis and management of the diabetes mellitus 
include the classical clinical trials and the physicians’ 
experience, but they do not account by the dynamics of 
the blood glucose and insulin. Therefore, it is having 
many diabetes patients with poor control of blood glucose 
values is a situation to be expected. The blood glucose 
dynamical pattern ascertained by mathematical methods 
for each patient could significantly improve the diabetes 
treatment in the future (Van Cauter, 1997). 

2. METHOD FOR CONTINUOUS MONITORING 

The continuous glucose monitoring system used a sensor 
for the measuring of the blood glucose, placed under or 
on the skin. The tested methods are of great diversity: the 



 
 

     

 

oxidation reaction of glucose, reverse ionophorese, micro 
dialyse, spectroscopy, techniques based on laser and 
fluorescent lights. The sensors measure the glucose 
concentration at 5, 15 or 60 minute intervals. The systems 
used for continuous glucose monitoring offer the 
recordings of time series of blood glucose values for 72 
hours. Basically, the system can realise the monitoring of 
the glycaemia with exceptional results, achieving: 
 The continuous recording of the glycaemia values 

and their tendencies. 
 The recording of all hypoglycaemia or 

hyperglycaemia episodes. 
The limits of the system consist in the medical point of 
view: possible complications (infections, detachments or 
false readings) and the necessity of replacement at relative 
small periods of time. From the precision point of view, a 
high dispersion of measurements has been seen. For every 
administration way there is an absorption curve specific 
for insulin, time constants and action periods that impose 
the particularisation of the glycaemia control algorithms. 
For the current stage of development in the area of 
glucose monitoring, two systems that have recently 
entered use are suggestive: 
 The Guardian RT Continuous Glucose Monitoring 

System (CGMS). It is a real-time monitoring and 
displaying system for glycaemia, determined every 5 
minutes and its use in practice has been allowed by 
the US Food and Drugs Administration in September 
2005. 

 The MiniMed Paradigm REAL-Time Insulin Pump 
and Continuous Glucose Monitoring System. This is 
a device which has the insulin pump integrated with a 
monitoring system for blood glucose. Its use in 
practice has been allowed by the US Food and Drugs 
Administration in April 2006. The system contains an 
intelligent pump, equipped with a computer that 
estimates the necessary quantity of insulin starting 
from the active insulin existing in the organism with 
the purpose of avoiding hypoglycaemia episodes. The 
system is considered to be an important step up in the 
treating of the insulin-dependent diabetes in a closed 
loop, similar to the endocrine physiologic pancreas. 

Measurements given by the CGMS are affected by 
perturbations (movement of the sensor, incomplete 
contact, etc.). Because of this, it is necessary to introduce 
a filter for the acquired data. The authors propose the 
algorithm described in the following, known as an 
optimal filtering method for stochastic signals. Blood 
glucose records (especially in patients with poor glycemic 
control) have the characteristics of a stochastic signal. But 
one of the most dangerous situations, having severe 
consequences on a patient’s state is the introduction of 
incorrect values in the management system for diabetes 
patient. For this reason it is necessary that each amount of 
glucose to be subject to decision making. For this purpose 
we chose the criterion of Bayes. 

3. OPTIMAL FILTERING 

Let us consider the model represented in Fig. 1, intended 
to estimate the  form of  a continual signal.  For  the  input 

 
 

 
 
 
 
 
 
 
 
Fig. 1. The structure for optimal filtering 
 
of optimal filter, we have the next relation: 

)()()( tntutz +=       (1)
  

with u(t) instrumental signal and n(t) the noise. The filter 
has the purpose to generate a signal, which must be an 
optimal approximation of the signal u(t):  

)()()( ttutq ε+=       (2) 

where ε(t) is a very small error of estimation process and 
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The quadratic average error of estimation process must be 
minimum, or equivalent: 

[ ]{ }22 )()()( tqtuEE −=ε      (4) 
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where h(t) represents the response of the filter when the 
input is the Dirac impulse. The solution of this problem is 
represented by the Wienner-Hopf equation: 

)()()(
0

tRdRth uzzz =−∫
∞

τττ     (6) 

If the acquisition process generates the stochastic series: 
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the filtered signal has the expression [Spataru,1987]: 

)()( tztq H=       (8) 

where H it is a matrix with the form: 
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In Spataru (1987) it is demonstrated for the matrix H the 
following expression: 
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where Cu - is the covariance matrix of input and Cn - is 
the covariance matrix of the perturbation. 

4. PROCESSING OF STOCHASTIC SIGNALS 

Let us consider the signal x(t) and y(t) as stationary 
random processes. The function of cross-correlation is a 
statistical quantity defined as: 

{ })()()( ττ += tytxERxy    (11) 

Also, the cross-covariance is the mean-removed: 

( )( ){ }yxxy tytxEC μτμτ −+−= )()()(  (12) 

or, in terms of the cross-correlation 

yxxyxy RC μμττ −= )()(    (13) 

where μx and μy are the mean values. For continuous 
stochastic process, the cross-correlation function is:   
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In practice, it is necessary to estimate this sequence, 
because it is possible to access only a finite segment of 
the infinite-random process. A common estimation, based 
on N samples of x(t) and y(t) (xn and yn) is the cross-
correlation function also called the time-ambiguity 
function. 
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We assume for this discussion that xn and yn are indexed 
from 0 to N-1. In the same conditions, the cross-
covariance function and the mean values (μx and μy) have 
the expressions (16), (17) and (18), (MathWorks, 1999). 
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An important parameter, which characterized the 
correlated process, is the cross-correlation coefficient: 
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Where xx D=σ  and yy D=σ  and Dx, Dy  represents 

the variances with the expressions: 
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The values of coefficient (19) are limited to the interval: 

1),(0 ≤≤ nn yxρ    (22) 

For |ρ| =1 we have two stochastic processes fully 
correlated, during ρ = 0, the processes are uncorrelated (it 
is very possible for them to be independent). 

5. FAULT DETECTION AND ISOLATION SCHEME 

Therapy with insulin pump is recommended worldwide as 
the most effective and physiological method of treatment 
in diabetes mellitus type I (insulin-dependent). Some 
authors consider that the closed-loop system, (artificial 
pancreas) is the best solution. An extra-corporeal blood 
glucose sensor is coupled to a programmable logic 
controller - PLC, which controls the rate of infusion of 
insulin into a subcutaneous site, so as to maintain normo-
glycaemia. Although very successful in maintaining 
normoglycaemia in diabetic patients for up a few days, it 
has major disadvantages for long-term use. Prolonged 
infusions carry the risk of thrombosis and infection. The 
generalised structure of the control system for blood 
glucose is shown in the Figure 2.  

The structure used for fault detection and isolation is 
represented in Fig. 3. In this case, the blood glucose is 
measured by two identical sensors. If p < 1 is the 
probability to have one failed sensor, the probability to 
have two simultaneously failed sensors (considered two 
independent process) is: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2. The structure of the predictive system for blood 
glucose control  
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pp <<2                 (23)  

Installing two sensors for blood glucose is not a difficult 
issue to overcome, but in this case the voting method is 
inapplicable. The author proposes the Fault management 
decision block (Figure 3) the structure represented in 
Figure 4. The idea consists to processing the signal 
purchased from the patient, 2,1 ),( and )( =itztu i  and to 
calculate an equivalent output signal )(tze  and to 
generate an alarm signal if the failures arise. The steps are 
as follows: 
 To calculate the cross-correlations function and the 

cross-correlation coefficients for )(tu  and 
2,1 ),( =itzi . 

 If   
0,1 ),( ρ≥ρ +mnn zu    (24) 

and 
0,2 ),( ρ≥ρ +mnn zu    (25) 

we can accept that the both sensors are in good 
conditions; 0ρ is a decision threshold and m is fixed 
in function by the time delay constant of the sensors. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 The value of equivalent output signal )(tze is 
calculated with the formula: 
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where ri, i=1,2, are calculated as dependent to the 
two correlation coefficients: ρ(u,z1) and ρ(u,z2). If 
both sensors are fault free, ri=1. If it is decided that 
one of the sensors has failed, ri=0, in order to 
eliminate the influence of erroneous signals. So, we 
can say  { }1,0∈ir . 

The Bayes decision block from Figure 4 has the internal 
law: 
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The structure of the signal processing block (Figure 4) is a 
complex one and is represented in Figure 5. 
The intermediary signal |z1r1- z2r2| can be used like fault 
alarm signal Fa. If the both sensors are in good conditions 
(fault free), than 

0)()( 2211 ≈− rtzrtz                (28) 

If a failures arise, then 

 0)()( 2211 ≠− rtzrtz                (29) 

Another application is represented by the case when we 
use a single sensor. A possibility to detect a failure, at the 
sensor level, consists in the utilization of a similar scheme 
(Figure 6). This time, the role of the second sensor is 
assumed by the mathematical model, which represents the 
entire process (input-output). The structures of the blocks 
for fault management and for signal processing are the 
same. 
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