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Abstract: This note studies a delayed control approach, open and closed loop controllers, in order to
attenuate the oscillations of a three degrees of freedom (3DOF) overhead crane system. The proposed
control schemes have the capability of attenuate the oscillations during the travel phase and eliminated
them at the end point. Both control schemes give us simple expressions for the optimal control
parameters. We compared our results with numerical simulations and performed experiments over a
laboratory overhead crane.
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1. INTRODUCTION

The need of faster load transportation using cranes keeping
oscillations of the load low is a conflicting objective, see Abdel-
Rahman et al. (2003). To move fast the load requires high
acceleration on the trolley which produces larger oscillations;
these oscillations slow down the rate of operation and increase
the operational cost. In the last years various control approaches
have been applied to increase the operator’s skills. These ap-
proaches fall into open loop and closed loop controllers.

Closed-loop control is known to be less sensitive to distur-
bances and parameter variations. Also it is commonly known in
the control literature that the existence of a delay in oscillatory
plants may produce a stabilization effect, see Kharitonov et al.
(2005). Hence, it is attractive to include a delay in the feed-
back control law. Pyragas (1992), proposed a delayed feedback
control law which stabilizes a particular unstable periodic orbit
of a chaotic system. In the work of Masoud et al. (2005), they
developed a delayed position-feedback control for a container
crane. Later Erneux and Kalmár-Nagy (2007) gave conditions
of stability for the control proposed by Pyragas applied to an
overhead crane. In this note we present a methodology to obtain
the optimal delay for the control law proposed by Pyragas.

On the other hand, open loop schemes do not require the mea-
surement of the load angle, in this context input shaping tech-
niques, see Singer and Seering (1990) and Smith (1957, 1958),
are the most popular which has proven effective on cranes for
reducing oscillations, see Park et al. (2000). Another open loop
approach is optimal control, which calculates the motion tra-
jectory off line based in the mathematical model of the system,
see Chernousko (1975) and Dadone and Valandingham (2002).
Commonly open loop techniques can not handle disturbances,
and sometimes is preferable work in conjunction with some
feedback control.

The present paper uses the approaches of delay closed-loop
control and open-loop control schemes together, in order to
reduce the load oscillations in the travel phase and eliminate
them completely at the end point. Our scheme has the particu-
larity that it is compatible with actual manual operators and is

designed to operate transparently to the crane operator, that is,
the control works over the on-off command sent by the operator.

2. PROBLEM FORMULATION

In this section we present a brief description of the problem.
Figure 1 shows the coordinate system of a 3DOF overhead
crane; the system consists of a variable length pendulum whose
suspension point is capable to move along the X − axis due to
the fx force, the force fl is responsible for the length variation
of the rope. The load is considered as a point mass and the mass
and stiffness of the cable are neglected. The following notation
is used: M is the trolley mass, m the load mass, l is the length
of the hoisting rope, δ1, δ2 and δ3 are the friction coefficients
associated with the x , l and θ motions, respectively.

Fig. 1. Coordinate system.

To get the model of the overhead crane, we can apply the Euler-
Lagrange equations, see Lee (1998), or the Newton laws, see
Fliess et al. (1993). Because of the motor gear, responsible
of the movement in the X − axis, we can consider that the
movement of the payload does not affect the dynamic of the
car. The model is the following:

Mẍ + δ1ẋ = fx (1)



ml̈ + δ3 l̇ = fl (2)

ml2θ̈ + 2mll̇θ̇ + mgl sin θ + mlẍ cos θ + δ2θ̇ = 0 (3)

The control problem is to move the load from the origin point
(x0, y0) to the final point (xf , y0), keeping the oscillations
of the load low, (oscillations over 5◦ are dangerous). We as-
sume that changing the rope length is needed only to avoid
obstacles in the path of the load; with these assumptions we
can obtain a linearized model around the equilibrium point
[x, ẋ, θ, θ̇, l, l̇]T = [0, 0, 0, 0, L, 0]T where L > 0 is a constant,
based on the Laboratory crane we selected L = 1.85m. Then
we reduce the equations of motion to:

ẍ = Lux (4)

l̈ = ul (5)

θ̈ =− δ2

mL2
θ̇ − g

L
θ − ux (6)

where ux =
1

ML
[fx − δ1ẋ] and ul =

1

m
[fl − δ3 l̇]. The

parameters of the laboratory crane are: m = 1kg, M = 0.6kg,
L = 1.85m, δ1 = 1.3kg/s, δ2 = 0.0087kg m2/s and
δ3 = 4.1kg/s. These parameters are considered in the rest of
the paper.
Remark 1. With the control law ux we have fx = MLux+δ1ẋ.

3. DELAYED FEEDBACK CONTROL

The aim of this section is to study the feedback control law
proposed by Pyragas, i.e.,

ux = −k[θ(t − h) − θ(t)] (7)

This control law consists of a constant that multiply the differ-
ence between the delayed angle θ(t−h) and the angle θ(t), see
Pyragas (1992). Figure 2 shows how will be implemented this
control law.

Fig. 2. Delayed feedback control.

Now substituting the control law (7) into equation (6) we have:

θ̈(t) + 2µω0θ̇(t) + ω2
0θ(t) = k(θ(t − h) − θ(t)) (8)

where µ = δ2

2mL2ω0

= 0.00055 dimensionless coefficient, and
ω2

0 = g
L

= 5.74rad2/s2.

3.1 Stability Analysis

The characteristic equation of the system (8) is:
s2 + 2µω0s + (ω2

0 + k) − ke−τs = 0 (9)

The system (8) is asymptotically stable iff ∃ ε > 0 : roots
of equation (9) has real parts less than −ε, see Bellman and
Cooke (1963). Due to the fact that there are infinitely countable
many roots, to study the roots location is a complex task;
then in order to study stability of equation (9) we applied
the D-subdivision method (or ”continuity argument ”), see
Kolmanovskii and Myshkis (1999). This method says that in
the parameter space (k, h), there are regions where the numbers
of stable (or unstable) roots of (9) is fixed. At the boundaries
separating these regions the corresponding (k, h) parameters
generates at least one pair of purely imaginary roots or zero
root, see Minorsky (1948).

The condition that will help us to define the boundary between
stable and unstable solutions in the parameter space (k, h) is
that the real and imaginary parts of (9) will be equal to zero:

−ω2 + ω2
0 + k − k cosωh = 0 (10)

k sin ωh + 2µω0ω = 0 (11)

Combining these equations and defining φ = hω
2 , we obtain the

following parametric equations:

k = − 4µω0φ

h sin 2φ
(12)

h2ω2
0 − 4µω0φh tan φ − 4φ2 = 0 (13)

equation (13) always admit a positive root:

h =
2µφ tan φ

ω0
+

2

ω0
| φ |

√

µ2 tan2 φ + 1 (14)

With equations (12) and (14) we can plot the boundaries be-
tween stability and instability, assigning continuous values to φ
with a fixed step. Figure 3 shows the stable and unstable regions
for the first period (grey region).

Fig. 3. Stability region (grey) for (0 < h < T =
2π

ω0

√

1 − µ2
).

In the stability analysis we consider the maximum length avail-
able in the laboratory crane (L = 1.85m), then it is important
to know what happen with the stability region (3) if the ca-
ble length decrease; if L decrease the period T = 2π

√
L

√
g
√

1−µ2

decrease, so the stability region decrease (see fig. 4); it is
important consider this decrement when we select the control
parameters (k, h).
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Fig. 4. Effect of L in the stability region.

Now the question is, Which parameters (k, h) are the better
ones?, i.e., Which values of (k, h) give the greater damping to
the system?; actually if we increase the value k in the stable
region also the damping of the system increase, i.e., the greater
k, the grater damping. However we cannot increase the value
of k so much because for large values of k, saturation in the
actuators appear and the dynamics of the system changes. With
this precedent the problem to solve is the next one: given a small
value of k, What is the delay h that provide the largest damping
into the system?

3.2 Optimal delay

To solve the optimal delay problem we will apply the averaging
method, see Minorsky (1948), in order to obtain the solution
of the system (8) valid for small values of k. If we apply the
change of variable θ(t) = e−µω0tz(t) to the equation (8), we
obtain a system of the form:

z̈(t) + ω2
1z(t) = kz(t − h) (15)

where ω2
1 = ω2

0(1 − µ2) + k. Following the averaging method
we will find a solution for the system (15) which has the next
form:

z(t) = a(t) sin(ω1t + b(t)) (16)

The amplitude a(t) and the phase b(t) are slowly time varying
and the derivative of the solution should satisfy the following
equation:

ż(t) = a(t)ω1 cos(ω1t + b(t)) (17)

this condition establishes the next restriction:

ȧ(t) sin(ω1t + b(t)) + a(t)ḃ(t) cos(ω1t + b(t)) = 0 (18)

in order to simplify, we will omit the dependence of time in
the rest of the section. Substituting z, ż and z̈ into (15) and
considering (18) we have:

ḃ =−ke−µω0h sin(γ − σ) sin γ (19)

ȧ = kae−µω0h sin(γ − σ) cos γ (20)

where γ = ω1t + b and σ = ω1h. Following the standard
procedure of averaging, see Kryloff and Bogoliuboff (1943),
we obtain the next equations:

ḃ =−ke−µω0h

2πω1

∫ 2π

0

sin(γ − σ) sin γdγ (21)

ȧ =
kae−µω0h

2πω1

∫ 2π

0

sin(γ − σ) cos γdγ (22)

solving (21) and (22) we have:

b = c1 −
ke−µω0h

2ω1
cos(ω1ht) (23)

a = c2e
− k

2ω1
e−µω0h sin(ω1h)t (24)

where c1 = b(0) and c2 = a(0) are the initial conditions.
Finally the solution of system (8) for small values of k is:

θ = c2e
−δ(h)t sin(ω1t + c1 −

ke−µω0h

2ω1
cos(ω1ht)) (25)

where δ(h) = µω0 + k
2ω1

e−µω0h sin(ω1h). Figure 5 shows the
function δ(h) for different values of k, in the interval 0 < h <
1.2, this range falls into the first region of stability. Now the
natural question is: Given a small value of k from the stability
region (fig. 3), What is the optimal delay h?, i.e., What is the
delay h that give the largest damping to the system?.
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Fig. 5. δ(h) for some values of k.

In order to obtain the value h that maximizes the function δ(h),
for a given k, we used the first derivative criterion; finally we
obtain the expression for the optimal delay:

hop =
1

ω1
arctan(

1

µω0
) (26)

3.3 Numerical approach

In this section, we present a numerical approach in order to
obtain the optimal delay hop for the system (8). A common
way to study the damping in a linear system is to measure the
rate of decay of oscillation, see Beards (1995); by definition,
the logarithmic decrement, Λ, is the natural logarithm of the
ratio of any two successive peaks in the same direction, so if
we measure two successive peaks A1 and A2 as in fig. 6, we
have

Λ = ln(
A1

A2
) =

2πµ
√

1 − µ2
(27)



Fig. 6. Exponential decay.

If we measure Λ from the numeric solution we can get the
damping factor µ from (27). For small µ is better to measure
the amplitude of oscillations with many periods of separation
so that an easily measurable difference exists, i.e.,

Λ =
1

N
ln(

A1

AN+1
) (28)

where N is the number of periods considered.

The algorithm to get the optimal delay is as follow:

(1) The value of k is fixed.
(2) The delay h will be varying with a fixed step (for example

0.01) between the interval (0 < h < T ).
(3) With the integration method ”dde23” of Matlab, the so-

lution of (3) with Pyragas control is obtained for every
value of h in the interval of interest, considering the initial
condition θ(0) = 0 and θ̇(0) = 1.

(4) Λ is measured from the numeric solution and conse-
quently the value of µ is obtained.

(5) We made a comparison of the values of µ for every value
of h in the interval (0 < h < T ).

(6) Finally the optimal delay, is the delay that generated the
largest damping µ.

The next table shows a comparison of the results obtained with
the analytic solution (26) and the numerical approach.

k hop =
1

ω1
arctan(

1

µω0
)

hop obtained with
the numeric method

.05 0.6784 0.69
0.1 0.6752 0.68
0.5 0.6516 0.66
1.5 0.6018 0.61
3 0.5447 0.55
5 0.4890 0.5

Numeric method validate the expression obtained with Averag-
ing for the optimal delay.

4. PREFILTER

In this section, the problem of load swing attenuation is studied
in an open-loop scheme. It is known that the input shaping
technique is able to suppress residual vibrations in linear time
invariant systems, see Singer and Seering (1990), however

instead of shaping the input signal by a sequence of impulses
we will apply a prefilter to the input signal like is shown in fig.
7, then it is only necessary to calculate the prefilter parameters
A and τ , where 0 < A < 1 for underdamped second order
linear systems.

Fig. 7. Prefilter.

In the note we call prefilter to the input
u(t) = A1(t) + (1 − A)1(t − τ) (29)

where 1(t − h) is a unit step starting at t = h.

4.1 Transient Response Analysis

Substituting the signal control

fx = −ω2
0MLu + δ1ẋ (30)

in equation (6), we have

θ̈ + 2µωθ̇0 + ω2
0θ = ω2

0u

this is a typical second order linear differential equation, with

transfer function g(s) =
ω2

0

s2 + 2µω0s + ω2
0

; if we apply a unit

step in t = 0, the system response is:

θ(t) = 1 − e−µω0t cos(ωrt) −
2µe−µωt

√

1 − µ2
sin(ωrt)

where ωr = ω0

√

1 − µ2; now if we apply the input u(t) =

A1(t)+(1−A)1(t−τ), or in frequency domain u(s) = A
1

s
+

(1 − A)
e−sτ

s
, the system response is

θ(t) = [A − Ae−µω0t cos(ωrt) −
2Aµe−µω0t

√

1 − µ2
sin(ωrt)]1(t)+

[(1 − A) − (1 − A)e−µω0(t−τ) cos(ωr(t − τ))

−2(1 − A)µe−µω0(t−τ)

√

1 − µ2
sin(ωr(t − τ))]1(t − τ)

(31)

By definition τ is the time required for the response to reach the
first peak of the overshoot, which is given by

τ =
π

ω0

√

1 − µ2
(32)

Equating the coefficients of cos(ωrt) and cos(ωr(t−τ)) of (31)

we have A = 1
1+Mp

, where Mp = e

µπ
√

1 − µ2
.

Remark 2. The idea of this prefilter goes back to O. Smith, see
Smith (1957) and Smith (1958).



5. CONTROL FOR CABLE LENGTH

As we mentioned in section 2, the control problem consists to
move the load from the initial point (x0, y0) = (X0, L0) to the
final point (xf , y0) = (X3, L0) (fig. 8). For this objective, a
step of finite duration is applied to trolley in order to accelerate
it and moved it to a desired position, this command emulated
the signal send by the operator; moreover, in order to control
the cable length, we propose an independent PI controller of
the form (frequency domain):

ul = kpe(s) + ki

1

s
e(s) (33)

where e(s) = lr(s) − l(s) and the reference (lr) is

lr =

{

L0

Lf

for X2 < x ≤ X0

for x ≤ X2
(34)

Then we need select the gains kp and ki and also fix the
parameters X0 and X2 from fig. 8; for the reference, the
considered parameters are: L0 = 1.85m, Lf = 1.55m, X0 =
0m and X2 = 0.65m.

Fig. 8. Desirable path for the cable length.

6. SIMULATIONS

Simulations were performed in Matlab-Simulink, with the non-
linear model of the crane (1)-(3) and every control scheme
(delayed control (7) and prefilter (29); the operator input is
a step of finite duration; independently, the PI controller is
the responsible of the cable length variation. We considered
k = 5 and hop = 0.4885 for the delayed feedback control, and
A = 0.5, τ = 1.36 for prefilter parameters; for the PI control
we selected: kp = 15 and ki = 1. For comparison purposes
a proportional derivative (PD) control law ux = k1θ + k2θ̇,
is implemented; we considered the parameters k1 = 5 and
k2 = 0.24, with these parameters we have the closed loop
dynamic θ̈ + 2δωθ̇ + ω2θ = 0, where δ = 0.5 and ω = 2.3.
Note that the product δω = 1.15, which is equivalent to the
value δ(h), is greater than the value considered for the delayed
control with k = 5, that is δ(hop) = 0.79. The plots obtained
are:
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Fig. 9. Simulation results, θ with the 3 schemes of control.
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Fig. 10. Simulation results, x position with the 3 schemes of
control.
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Fig. 11. Simulation results, cable length with the PI control law.

7. EXPERIMENTS

Experiments were performed in a laboratory crane (Inteco)
using the feedback control law (7) and prefilter (30), with the
parameters considered in simulations. The crane is driven by
two DC servo motors, for traveling and hoisting respectively.
There are two encoders measuring the state variables (x, θ); the
derivatives (ẋ, θ̇) are obtained with filters. The following results
were obtained:
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Fig. 12. Experimental results, θ with the 3 schemes of control.
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Fig. 13. Experimental results, x position with the 3 schemes of
control.
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Fig. 14. Experimental results, cable length with the PI control
law.

7.1 Prefilter compensation

In order to improve the control performance, the used of both
approaches together (open-loop and closed-loop control) is
proposed as is shown in fig. 15.

Fig. 15. Prefilter compensation.

Prefilter compensation reduce significantly the angle θ in the
first period and almost eliminated the residual oscillations.
Besides, the prefilter can be combined with other approaches
as PD control to increase the performance for the oscillation
attenuation problem in an overhead crane.
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Fig. 16. Experimental results, θ angle with prefilter compensa-
tion.

8. CONCLUSIONS

In this note a delayed closed loop control and open loop control
schemes were studied in order to attenuate the oscillations

of a 3DOF overhead crane. The theoretical and experimental
results show that the proposed control schemes guarantees both
rapid damping of load oscillation and accurate control of rope
length with excellent transient response for the practical case of
simultaneous traveling and slow hoisting motion.

Averaging technique give us, in a simple expression, a very
good approximation to obtain the optimal delay for Pyragas
control; comparison with a numeric method validate the result.

In the industry, to measure the angle position of the load is
a hard task, for this reason the prefilter is preferable over the
closed-loop schemes. Extension to the 5DOF case and ship-
mounted cranes are considered for future work.

REFERENCES

Abdel-Rahman, E.M., Nayfeh, A.H., and Masoud, Z.N. (2003).
Dynamics and control of cranes: A review. Journal of
Vibration and Control, 9, 863–908.

Beards, C.F. (1995). Engineering Vibration Analysis with
Application to Control Systems. Butterworth-Heinemann.

Bellman, R. and Cooke, K.L. (1963). Differential Difference
Equations. Academic Press Inc., New York.

Chernousko, F.L. (1975). Optimum translation of a pendulum.
PMM-Journal of Applied Mathematics and Mechanics, 39.

Dadone, P. and Valandingham, H.F. (2002). Load transfer
control for a gantry crane with arbitrary delay constraints.
Journal of Vibration and Control, 8, 135–158.

Erneux, T. and Kalmár-Nagy, T. (2007). Nonlinear stability of
a delayed feedback controlled container crane. Journal of
Vibration and Control, 13, 603–616.

Fliess, M., Levine, J., and Rouchon, P. (1993). Generalized
state variable representation for a simplified crane descrip-
tion. International Journal of Control, 58.

Kharitonov, V.L., Niculescu, S.I., Moreno, J., and Michiels,
W. (2005). Static output feedback stabilization: Necessary
conditions for multiple delay controllers. IEEE Transactions
on Automatic Control, 50.

Kolmanovskii, V. and Myshkis, A. (1999). Introduction to the
Theory and Applications of Functional Differential Equa-
tions. Kluwer Acamedic Publishers, Boston.

Kryloff, N. and Bogoliuboff, N. (1943). Introduction to Non-
Linear Mechanics. Princenton University Press, New Jersey.

Lee, H.H. (1998). Modelling and control of a three-dimensional
overhead crane. Journal of Dynamics Systems, Measurement,
and Control, 120, 471–476.

Masoud, Z.N., Nayfeh, A.H., and Nayfeh, N.A. (2005). Sway
reduction on quasey-side containers cranes using delayed
feedback controller: Simulations and experiments. Journal
of Vibration and Control, 11, 1103–1122.

Minorsky, N. (1948). Self-excited mechanical oscillations.
Journal of Applied Physics, 19.

Park, B.J., Hong, K.S., and Huh, C.D. (2000). Time-efficient
input shaping control of container crane systems. Proc. of
the IEEE International Conference on Control Applications.

Pyragas, K. (1992). Continuous control of chaos by self-
controlling feedback. Physics Letters A, 170, 421–428.

Singer, N.C. and Seering, W.P. (1990). Preshaping command
inputs to reduce system vibration. Transactions of the ASME,
112, 76–82.

Smith, O.J.M. (1957). Posicast control of damped oscillatory
systems. Proc. IRE, 45, 1249–1255.

Smith, O.J.M. (1958). Feedback Control Systems. McGraw-
Hill, New York.


