
Running Complex Queries on a Graph
Database: A Performance Evaluation of

Neo4j

Călin Constantinov, Mihai L. Mocanu, Cosmin M. Poteraş

Department of Computers and Information Technology, University of
Craiova, Romania (e-mail: constantinov.calin@ucv.ro,
mmocanu@software.ucv.ro, cpoteras@software.ucv.ro).

Abstract: Computer science, by far one of the most dynamic research domains, manages
to produce concepts, prototypes and paradigms at a pace that is sometimes hard to follow.
Although most of these ideas set goals that are more or less realistic, some of them are able to
fascinate by their potential to lead to dramatic changes. One particular case is represented today
by graph databases, a type of NOSQL solution which can be applied to very power demanding
tasks in data analysis frameworks. They allow for the expansion of data sources, including
social media feeds, thus making complex systems such as recommendation engines much more
powerful. No matter the controversies among both simple technology enthusiasts and large
corporations, these databases are rapidly expanding, managing to not only generate interest,
but also remarkable solutions. In this paper, we will have a deep look over the most popular graph
database, Neo4j, evaluating its performance and scalability options when running very complex
statistics and recommendation queries over a dataset of a significant size, containing strongly
interconnected Facebook data. The evolution from a simple standalone database scenario to
a Highly-Available (HA) cluster setup is described step by step by analysing the impact that
each configuration change has on the system’s both read and write performance. Given the
positive results of this paper, we believe that graph technologies represent a very promising
research domain as, considering their performance, they are likely to hold the key to building
an efficient, distributed social-network graph mining framework on which data analysis jobs can
be continuously run, further enhancing the data.

Keywords: Graph Database, Facebook Data, Performance Evaluation, Social Recommendation
Engine, Data Analysis

1. INTRODUCTION

Although NOSQL databases faced initial reticence from
developers used to the comfort and safety inspired by
SQL, we are now seeing a strong raise in the popularity
of some of these novel persistence solutions, as most of
the large corporations are currently at least experimenting
with them. Apart from the promising performance gain,
some products are reaching maturity and many of the
NOSQL drawbacks are being rapidly dealt with, further
increasing interest. Although SQL databases still excel in
many situations, the need to store very large amounts
of data has revealed the difficultly of scaling these tra-
ditional solutions. Moreover, given the large number of
relationships between entities, modern data is starting
to have a graph-like structure. Unfortunately, SQL does
not naturally support graph specific operations such as
finding the shortest path between two nodes. Complex
stored procedures and queries are thus needed for even
the simplest tasks.

For instance, given its popularity, Facebook always rep-
resents an interesting case-study. Over the years, this
platform has generated a lot of interest and has been
taken as a reference for all social networks. The rate of

growth has been remarkable: not only has the network
seen a steep rise in the number of total active users, but
also the quantity and complexity of the information that
these users can share and which needs to be processed
has increased. Also considering that a typical user can
have a triple digit number of friends, it is easy to imagine
that the data stored by Facebook is not only large and
diverse, but also very strongly connected, as mentioned in
paper Bronson et al. (2013). Basically, a very large portion
of the world’s active population is present on Facebook,
creating, consuming and sharing content. This is why a
lot of businesses have transited from promoting products
using a website to simply managing a Facebook page,
maximizing reach, strengthening relationships with clients
and minimizing operational costs. The advantage of having
all these kind of activities in the same place is that most of
the information is semi-structured and can be easily mined
and processed, given that the right tools are deployed for
the job.

The need to process all this data in a reasonable amount
of time has led to the evaluation of SQL alternatives. One
of the most promising of them is represented by graph
databases, as they naturally model social data. In this
paper we aim to simulate very complex data analysis jobs

ANNALS OF THE UNIVERSITY OF CRAIOVA 
Series: Automation, Computers, Electronics and Mechatronics, Vol. 12 (39), No. 1, 2015 

____________________________________________________________________________________________________________

38



by performing socially-enhanced recommendations on a
large data set, a common task in the Web 2.0 world.

Traditional recommender systems have been used by com-
panies or shops that sell an item or a service in the
attempt to cross-sell an additional product, as described
by work Balabanović and Shoham (1997). There are usu-
ally a number of techniques implied: for example, if a
certain product is frequently bought together with another
product, it makes sense to advertise the second product
along with the first one to the potential buyer. Another
example would be to identify pairs of users that typically
buy the same products and recommend products that just
one of them has bought to the other one. Furthermore,
collaborative filtering was used for predicting the way in
which a certain user would evaluate a product or service,
based on his similarity to other users. Modern day engines
however have much more social data available for taking
into consideration before performing a recommendation.
The greatest challenge is to be able to run recommendation
queries fast, without significant performance penalties as
the size of the database grows. This is difficult to achieve
using SQL, but can be attempted using a graph database
such as Neo4j which promises easier scalability.

2. BACKGROUND

As mentioned in article Angles and Gutierrez (2008), al-
ternatives for relational databases started to appear as
early as the beginning of the nineties when object-oriented
databases were developed for several data-intensive appli-
cations. Roughly in the same period, the first graph mod-
els were developed, but were gradually abandoned until
recently. Simple record-type data having a fixed schema
is no longer typical for modern applications as this can
represent a major drawback in an era flooded by semi-
structured information.

The need to store and process data of graph-like nature
has, however, revived graph databases over the last few
years, providing developers with powerful tools for cap-
turing domain semantics within a visual data model. It is
mentioned in the work that nowadays information inter-
connectivity and topology is at least as important as the
data itself, the true value being represented by the links
between entities. Moreover, contrary to SQL for which
exploring the underlying web of relationships is a difficult
task, this new database model comes with a much more
intuitive querying language paradigm.

In the last few years, many graph database implementa-
tions have been released and choosing the right one is not
always an easy task, as they also tend to evolve at a fast
pace. Fortunately, many papers which try to benchmark
and compare the alternatives are now available.

For instance, paper Ciglan et al. (2012) mentions that the
graph data structure is an attractive abstraction for mod-
elling real-world phenomena and insists on the importance
of fairly assessing the performance of graph databases.
Typically, performance is evaluated by looking over how
well these databases can handle various traversal opera-
tions as this is what queries come down to in a graph.
Two sets of tests are conducted, which match the types of
queries that we have run over the system that we will be

describing in this paper: one dealing with pure query-like
traversals which have random starting points and search
for related vertices and a seconds aiming to simulate whole
graph traversal operations typically used more complex
jobs such as computation of connected components analy-
sis or centrality measures. In this preliminary experiment,
Neo4j was tested along alternative databases, obtaining
satisfactory results.

The ideal approach for traversal operations is to have
the whole graph structure cached in the volatile memory
as these operations are characterised by random memory
accesses, which are known to be very time consuming for
a persistent storage. However, as it will be later detailed,
there are many cases for which the whole graph does
not fit in the main memory. In such situations, some
optimisations can be attempted in order to have most of
the queried sub-graph cached.

Work Jouili and Vansteenberghe (2013) states that more
and more companies are starting to provide services which
can no longer be efficiently managed by using traditional
relational databases, forcing them to seek alternative tech-
nologies. Graph databases are again mentioned as a possi-
ble solution for many types of applications and the paper
aims to evaluate a number of implementations from a
client’s side perspective: measuring the time that a client
has to wait between issuing a request and receiving a re-
sponse from the database, thus including communications
overhead. Neo4j is concluded to have the best overall per-
formance, while standing out for its predictable behaviour.

As another novelty, the benchmark introduced in the work
supports simulating multiple concurrent clients located
on a number of distributed machines. This is something
similar to what is happening in the application that we
have developed.

Reference Holzschuher and Peinl (2013) provides an in-
sight on Cypher, Neo4j’s graph query language, conclud-
ing, based on performance and ease of use, that it is a
promising candidate for becoming a standard. The authors
experiment with a Web 2.0 inspired set of data for which it
is now common to use NOSQL alternatives. Modelling this
information in a relational database causes a high number
of many-to-many relationships which in turn leads to a
succession of very costly JOIN operations when querying
the data. Graph databases are again recommended for
these use-cases and an observation is made about the fact
that these technologies can be placed somewhere between
the SQL and NOSQL worlds as they are not simple aggre-
gate solutions (such as Key-Value Stores, Column-Family
Stores or Document Databases) and usual favour consis-
tency and availability as opposed to partition-tolerance.

The study compares Cypher with Gremlin, an alternative
graph query language which, although outperforming the
former in a number of scenarios, is not preferred because
of having the disadvantage of not being as maintainable
and as readable. SQL is partially compared with Cypher
and, as expected, performs much worse. Moreover, the
experiment confirms that growing the number of entities
stored in the graph database does not significantly affect
performance as it does in case of an SQL solution. The
reason for this is that only the local neighbourhood of
a given node is traversed, no matter the size of the

ANNALS OF THE UNIVERSITY OF CRAIOVA 
Series: Automation, Computers, Electronics and Mechatronics, Vol. 12 (39), No. 1, 2015 

____________________________________________________________________________________________________________

39



whole dataset. The paper however states that it is not
over-stressing highly graph-related queries such as group
recommendation queries, which is something that our
experiment will focus more on.

An even more thorough comparison between a graph and
a relational database can be a can be found in article
Batra and Tyagi (2012). Once again, it is noted that when
storing social data that is expected to evolve, SQL is not
an optimal approach. Although Neo4j is mentioned as not
being a mature solution, it provides an easily mutable
schema and outperforms MySQL in all the experiments
carried out, also showing that the performance gain raises
as the size of the database grows.

Scalability is further analysed in work Dominguez-Sal et al.
(2010) where four of the most popular graph databases
are evaluated using the HPC Scalable Graph Analysis
Benchmark using a set of generated data. The tests range
from measuring the edge and node insertion along with the
creation of initial indexes performance to evaluating the
time needed to traverse the whole graph when computing
the Betweenness Centrality indicator for certain nodes.
Neo4j and DEX, an alternative graph database, were
able to achieve the best performance, having no problems
scaling up to a dataset consisting of 1 million nodes.
Additionally, the importance of having implemented an
optimal caching strategy for graphs that do not fit in the
main memory is also mentioned in the paper.

It is important to state that all the referenced papers work
with synthetic datasets as compared to our tests which
were run over real Facebook data. Moreover, older Neo4j
versions are used and, as also anticipated by these studies,
some of the problems identified are claimed to have been
addressed in the newer releases.

Additionally, when dealing with very large datasets, hori-
zontal scaling seems to be the way to go for increasing per-
formance. However, an issue faced by engineers is the fact
that although processing power has seen great increases in
the last decades, network transfer rates fall way behind.
This is why, when trying to improve parallel performance,
it is important to try to limit or optimize data transfers
over the network. Thus, it makes more sense to try to
migrate the computational task to the data than to bring
the data where the computational task is being executed.
This technique is called computational steering, which our
previous work Poteraş et al. (2011) describes in greater
detail. A brief discussion on what can be attempted in
case of our system will be detailed in a later section.

3. IMPLEMENTATION

Neo4j is currently the most popular graph database, reason
for which we chose it for our implementation.

This database can be deployed in two ways:

(1) Standalone server: meaning that just one instance
of the database is used. Two configurations are pos-
sible:
(a) Server mode - as typical for any traditional

database, in this configuration Neo4j runs inde-
pendently of the main application. For communi-
cation, a set of REST services are exposed.

(b) Embedded mode - although it only works with
applications that run in a Java Virtual Machine,
in this configuration Neo4j is tightly coupled to
the main application. As it can be expected and
also seen in our experiments, very high perfor-
mance can sometimes be obtained in this sce-
nario. However, there are also many disadvan-
tages when sharing the volatile memory between
the application and the database.

(2) Highly-Available cluster: allows for a number of
database instances to be used together in order to
improve performance. A Neo4j HA cluster can be
composed of both Server-mode running Neo4j in-
stances as well as Embedded-mode running ones, each
of them operating on a different machine. Communi-
cation between instances is realized over a custom
protocol that tries to eliminate as much overhead as
possible. A Neo4j HA cluster has of a single master
node and a number of slave nodes. By only allowing
write operations to be performed through the master
(even if a write request is issued to a slave node,
the master will eventually be called to instrument
the operation), ACID transactions can be imposed.
In order to complete a write operation and guar-
antee consistency, at least N / 2 + 1 servers from
the cluster need to be available (out of N, the total
number of servers in the cluster). If this quorum is
not met, the cluster functions in read-only mode. As
expected, write performance can sometimes be worse
on a cluster then on a single database instance, due
to the cluster management overhead. Neo4j’s major
downside is that each node instance has a copy of
the whole database, so as for now, the database does
not support graph sharding. Graph sharding is a
NP-complete problem which is even more difficult to
solve considering that the graph is constantly evolv-
ing. Read performance can typically see near linear
speedup in a cluster configuration, as long as the
whole graph can be stored in-memory. Even if this
is not the case, it can be assumed that, for general
cases, it is faster to load portions of the missing graph
from a local permanent storage device than to call for
them over the network.

In a Neo4j Highly-Available cluster setup, it is typical for
a Java application to issue write requests to an Embedded-
Master node, while the read requests to be directed to a
Server-Slave node. In case there are multiple Server-Slave
nodes, a load balancer such as HAProxy can be used. An
example for this setup will be detailed in a later section.

But this kind of configuration can be the starting point
for a much more sophisticated graph database cluster.
Although social graph sharding might be very difficult to
achieve at this moment, cache sharding remains a valid
approach for improving read times. In cases were the graph
is very large, it might be impossible to store it entirely
in the very fast, but expensive, volatile memory. This is
especially true for Neo4j which employs a native graph
storage. However, Neo4j’s cache is filled with portions of
the graph most heavily accessed, so by using an advanced
load-balancing algorithm, requests could be routed to an
instance of Neo4j likely that holds most of the queried
graph in its cache. The trick would be to identify usage

ANNALS OF THE UNIVERSITY OF CRAIOVA 
Series: Automation, Computers, Electronics and Mechatronics, Vol. 12 (39), No. 1, 2015 

____________________________________________________________________________________________________________

40



Fig. 1. Neo4j Data Model

patterns by means of statistical analysis and customize the
HAProxy load balancer to forward requests to the ideal
instance of the graph database. In a way, this is also a
form of computational steering, as described in a previous
section. This is an active research domain which could lead
to building an optimal distributed social-network analysis
framework, but further discussions are outside the scope
of this paper.

The application aims to constantly mine Facebook in-
formation and gather as many check-ins placed in the
city of Craiova as possible and use them for performing
recommendations and computing statistics. As Facebook
data is not generally public, user authorization tokens are
required. Thus, two main modules were developed:

(1) Core Web Module: using Facebook Graph API
1.0 and Facebook Query Language, check-ins are
gathered and stored in Neo4j. The graph data model
can be seen in Fig. 1. The module also exposes
a REST service that will be called by the user-
facing module during Facebook login. This service
saves the user’s Facebook authorization token in
the databases which will be then used for further
gathering Facebook data. All database write requests
are issued by this module. In order to guarantee that
no duplicate data is stored, the module also sends a
number of read requests.

(2) User MVC Module: a number of statistics and rec-
ommendations that are detailed bellow are available
to a logged in user. Initially, a user has to login and
authorise the application using his Facebook account.
This module only sends read requests to the database.

A number of basic recommendations and statistics were
written using Cypher and were made available to the users:

(1) Global statistics and recommendations:
(a) Total number of users / places / check-ins - sim-

ple statistics counting the number of particular
items stored in the database.

(b) Most popular categories - for example: Bar, Pub,
Italian Restaurant.

(c) Most popular places, by the number of check-ins -
the number of check-ins for each place is counted.

(d) Most popular places, by number of visitors - some
visitors place more than one check-in in the same
location, so the number of unique visitors is
counted.

(e) Most popular places, by the percentage of visitors
that have returned at least once - for each place,
out of the total number of visitors, the percent-
age of visitors that has checked-in at the given
location at least twice is counted.

(2) Recommendations and statistics given a spe-
cific user:
(a) Friends with the most check-ins - the number of

check-ins of each of the current user’s friends is
counted.

(b) Suggestions for new friends - non-friends most
often tagged in the same check-in as the current
user are identified.

(c) Suggestions for new places to visit - non-visited
locations most often visited by the current user’s
close friends are identified. Close friends are iden-
tified by counting the number of check-ins in
which both the friend and the given user are
tagged in.

(3) Recommendations and statistics given a spe-
cific place:
(a) Similar places, based on their common visitors -

the number of common visitors the given place
has with every other place is counted.

(b) Similar places, based on their common categories
- the number of common categories the given
place has with every other place is counted. In
case of ties, the number of check-ins placed by
common visitors (as described previously) is also
counted for every other place.

As it can be observed, for a number of the above queries,
a graph-wide traversal will need to be performed.

For developing our platform, the following technologies
were used: Java SE 7, Spring Data Neo4j 2.3.4, HAProxy
1.4.25 and Neo4j 2.0.3.

4. EXPERIMENTAL RESULTS

All tests were run 3 times for 25 minutes and started from
the same dataset consisting of 21981 users, 48051 check-
ins, 549 places and 76 categories, all linked by 392607
relationships. During each test, data from Facebook was
further retrieved by 16 threads that operate by also making
sure no duplicate information is stored in Neo4j. This
means that, before saving new data, a worker thread
needs to issue both read and write requests which will be
considered as a whole and will be called a data persisting
operation. For simulating client usage, 96 threads were
constantly sending random statistics or recommendation
requests (form the previously described list) to the system.
The processing times presented where measured inside the
main application, thus only considering network overhead
inside the cluster (where applicable).

4.1 Neo4j Server vs Neo4j Embedded

This first performance comparison was conducted by using
a single computer (to be further referenced as PC1),
having the following configuration: 4th Gen Intel i7 @ 2.2
GHz, 8 GB DDR3 RAM @ 1600 MHz and HDD @ 5400
RPM. The size of our database is small enough for Neo4j
to cache all of it in the computer’s RAM memory, so the
impact of a slower HDD is minimized for read operations.
The results can be seen in Fig. 2.

The first test was run using Neo4j configured in a classic
Server configuration, exposing a set of REST endpoints.
For eliminating network overhead, the server was run on

ANNALS OF THE UNIVERSITY OF CRAIOVA 
Series: Automation, Computers, Electronics and Mechatronics, Vol. 12 (39), No. 1, 2015 

____________________________________________________________________________________________________________

41



Fig. 2. Neo4j Server vs Neo4j Embedded

the same machine as the application. The mean time for
finalizing a write request (from the moment the application
receives a data response from Facebook and up to the
moment when the data is successfully committed to the
database) was disappointing: 10492 milliseconds. Using
a high level Neo4j REST API along with the HTTP
overhead of each request greatly affects performance.

On the other hand, a very promising result of just 993
milliseconds for completing a recommendation request was
obtained (with a very small percentage of worst perform-
ing queries timed just slightly above 2100 milliseconds),
suggesting that the system is quite capable of handling a
large number of traversals. However, because of the slow
performing write operations, the graph did not suffer dra-
matic structural changes at a high pace, thus not forcing
Neo4j to invalidate and refresh the content of its cache,
which, in turn, makes high performing read operations
possible.

A first improvement that we brought to the system was
to configure Neo4j in Embedded mode and run it in the
same Java Virtual Machine as our application. This allows
Spring Data Neo4j to use low level (and thus fast) Neo4j
Core API functions when performing write operations,
as detailed in Hunger (2012). Data persisting operations
now took only 1111 milliseconds resulting in an impres-
sive 844% performance gain. However, recommendation

Fig. 3. Neo4j Mini-Cluster

requests now took an average of 1363 milliseconds to
complete, meaning a 31% performance drop. As previously
explained, because of the much higher number of write
operations, this was to be expected.

4.2 Neo4j Embedded vs Neo4j Mini-Cluster

For computing recommendations that have a high proba-
bility of being relevant, a lot of data needs to be processed.
This data also needs to always be up to date, so it is
important for our system to quickly store new information.
Although we managed to improve write times using the
previous configuration, we unfortunately ended up increas-
ing recommendation times. We decided to try and scale our
system by adding an additional computer (to be further
referenced as PC2), having the following configuration:
Intel Core2Quad @ 2.83 GHz, 4 GB DDR2 RAM @ 1066
MHz and HDD @ 7200 RPM. The configuration can be
seen in Fig. 3. The results can be seen in Fig. 4.

PC1 remained configured as before, with an Embedded
Neo4j instance (now having the role of a HA cluster
Master node) while another Neo4j Server instance was
deployed as a Slave node over a Gigabit LAN on PC2.
All recommendation requests were now sent to PC2
that only had to handle read operations (queries). All
previous tests were run again and the newly obtained
results were analysed. For writing operations, a mean time
of 841 milliseconds was observed, accounting for a 32%
performance gain. Although PC1 now only had to handle
data persistency requests, the result is still surprising
because this machine also needed to coordinate the HA
database cluster. This in turn means that all data written
on the Embedded instance of Neo4j needed to be replicated
on the Server instance. One reason for obtaining this result
is the fact that the two database instances communicate
through a custom protocol that does not have as much
overhead as REST calls over HTTP.

For recommendation operations, a mean time of 1186
milliseconds was obtained, meaning a 15% performance
increase. However, this result is still 21% behind the result
managed by our first configuration (for which, however,
graph structure changes were not as frequent). Considering
all the above aspects, we can conclude that, overall, this
was the most performant setup of the three configurations
analysed so far.

4.3 Neo4j Mini-Cluster vs Neo4j HAProxy Cluster

In attempt to further improve read operation times, we
decided to enhance our mini-cluster by adding one more

ANNALS OF THE UNIVERSITY OF CRAIOVA 
Series: Automation, Computers, Electronics and Mechatronics, Vol. 12 (39), No. 1, 2015 

____________________________________________________________________________________________________________

42



Fig. 4. Neo4j Embedded vs Neo4j Mini-Cluster

machine to it (to further referenced as PC3). This machine
had the following configuration: Intel Core2Duo @ 3.16
GHz, 4 GB DDR2 RAM @ 1066 MHz and HDD @ 7200
RPM. The configuration can be seen in Fig. 5. The results
can be seen in Fig. 6.

PC3 was used for running an additional Neo4j Server
Slave node connected to the cluster. A HAProxy load bal-
ancer was installed on PC2 and was used for forwarding
all recommendation requests to a Slave node running on
either PC2 or PC3.

The tests were executed one last time, leading to the
following results: for the write operations, an average ex-
ecution time of 829 milliseconds was obtained, account-
ing for a 1% gain (which could reasonably be considered
within an error margin). What is important to note is the
fact that the performance of the internal communications
protocol within the cluster for the Master node is not
significantly impacted by the addition of an extra Slave
node. Considering that the version of Neo4j used for our
experiments does not support parallel write operations, it
can be concluded that the only way to improve execution
times would be to vertically scale PC1.

For recommendation requests, the new configuration man-
aged to achieve a 38% performance gain, finalizing, on
average, each request in 857 milliseconds (accounting for a

Fig. 5. Neo4j HAProxy Cluster

9% gain compared to the initial stand-alone server setup,
although, as it was pointed out, this is not necessarily
relevant as the database also handles much more struc-
tural changes in this final configuration). While the results
are far from showing a linear performance improvement,
they are still remarkable. In order for the Slave nodes to
constantly catch-up with the rest of the cluster, somewhat
significant computational times on PC2 and PC3 are used
by the cluster consistency synchronization mechanisms.
Near linear scaling is probably to be expected for a sce-
nario where no data is written to the cluster. Moreover,
the HAProxy load balancer was running on PC2 meaning
that the overhead for forwarding requests over the network
was eliminated for this machine. Lastly, PC3 is somewhat
less powerful than PC2.

5. CONCLUSIONS AND FUTURE WORK

Although the initial results obtained for writing data to
an ordinary Server Neo4 instance were disappointing, by
progressively enhancing the system configuration, perfor-
mance was greatly improved. In the end, it was shown that
execution times for complex queries are quite reasonable
and that the system can also be horizontally scaled with-
out considerable effort.

Unfortunately, write operations remain the bottleneck of
any Neo4j cluster configuration so future efforts could
be taken in order to optimize them. An idea for a real-
world application would be to store and aggregate all
write requests over a period of time and perform all
the operations when low incoming read request rates are
detected. This is only valid for cases where postponing
the write operations doesn’t have a serious impact on the
application.

As already mentioned, NOSQL solutions evolve very
quickly. Because of this, we plan to successively upgrade
to major versions of Neo4j from the last couple of years
and run the initial tests again in order to assess the
performance improvements of each version for our specific
use-case. Moreover, we are going to further improve the
cluster by adding an additional machine that will work as
a dedicated load-balancer.

As query execution times were very low, as a long term
focus area, the system can be used as a starting point for
attempting to build a complex data analysis platform that
would try and identify clusters of strongly related nodes
along with their most representative entities, based on the
interactions within each node cluster. Moreover, it would
make sense to use this tightly interconnected clusters for

ANNALS OF THE UNIVERSITY OF CRAIOVA 
Series: Automation, Computers, Electronics and Mechatronics, Vol. 12 (39), No. 1, 2015 

____________________________________________________________________________________________________________

43



Fig. 6. Neo4j Mini-Cluster vs Neo4j HAProxy Cluster

achieving basic cache sharding, by optimally choosing the
slave instance to which to redirect requests, as previously
described.

As an example, it can be observed that the friendship rela-
tionships are not annotated in any way, although it is clear
that in any group of users some establish themselves as
influencers while others become simple followers. These re-
lationships can be constantly analysed and weighted. Thus
communities along with their respective opinion leaders
can be identified. Such information can be proven to be
valuable as it would allow us to also weight individuals
and their impact. This data can be used, for instance, by
recommendation engines to further improve the relevance
of their computed suggestions.

REFERENCES

Angles, R. and Gutierrez, C. (2008). Survey of
graph database models. ACM Comput. Surv.,
40(1), 1:1–1:39. doi:10.1145/1322432.1322433. URL
http://doi.acm.org/10.1145/1322432.1322433.

Balabanović, M. and Shoham, Y. (1997). Fab: Content-
based, collaborative recommendation. Commun. ACM,
40(3), 66–72. doi:10.1145/245108.245124. URL
http://doi.acm.org/10.1145/245108.245124.

Batra, S. and Tyagi, C. (2012). Comparative analysis of
relational and graph databases. International Journal
of Soft Computing and Engineering (IJSCE), 2(2).

Bronson, N., Amsden, Z., Cabrera, G., Chakka, P., Dimov,
P., Ding, H., Ferris, J., Giardullo, A., Kulkarni, S., Li,
H., Marchukov, M., Petrov, D., Puzar, L., Song, Y.J.,
and Venkataramani, V. (2013). Tao: Facebook’s dis-
tributed data store for the social graph. In Presented as
part of the 2013 USENIX Annual Technical Conference
(USENIX ATC 13), 49–60. USENIX, San Jose, CA.
URL https://www.usenix.org/conference/atc13.

Ciglan, M., Averbuch, A., and Hluchy, L. (2012). Bench-
marking traversal operations over graph databases. In
Data Engineering Workshops (ICDEW), 2012 IEEE
28th International Conference on, 186–189. doi:
10.1109/ICDEW.2012.47.

Dominguez-Sal, D., Urbón-Bayes, P., Giménez-Vañó, A.,
Gómez-Villamor, S., Mart́ınez-Bazán, N., and Larriba-
Pey, J.L. (2010). Survey of graph database performance
on the hpc scalable graph analysis benchmark. In
Proceedings of the 2010 International Conference on
Web-age Information Management, WAIM’10, 37–48.
Springer-Verlag, Berlin, Heidelberg.

Holzschuher, F. and Peinl, R. (2013). Performance
of graph query languages: Comparison of cypher,

gremlin and native access in neo4j. In Proceedings
of the Joint EDBT/ICDT 2013 Workshops,
EDBT ’13, 195–204. ACM, New York, NY,
USA. doi:10.1145/2457317.2457351. URL
http://doi.acm.org/10.1145/2457317.2457351.

Hunger, M. (2012). Good Relationships: The Spring Data
NEO4J Guide Book. InfoQ enterprise software develop-
ment series. C4Media.

Jouili, S. and Vansteenberghe, V. (2013). An empirical
comparison of graph databases. In Social Computing
(SocialCom), 2013 International Conference on, 708–
715. doi:10.1109/SocialCom.2013.106.

Poteraş, C., Constantinov, C., and Mocanu, M.
(2011). The evolutionary design of a frame-
work for computational steering. Annals of
the University of Craiova, 8(2), 50–59. URL
http://ace.ucv.ro/anale/content2011vol8nr2.html.

ANNALS OF THE UNIVERSITY OF CRAIOVA 
Series: Automation, Computers, Electronics and Mechatronics, Vol. 12 (39), No. 1, 2015 

____________________________________________________________________________________________________________

44




