

Limiting Backtracking in Fast Sudoku Solvers

Ileana-Diana V.D. Nicolae*, Anca-Iuliana P.M. Nicolae**

*Department of Computers and Information Technology
(e-mail:nicolae_ileana@software.ucv.ro)

 University of Craiova, Decebal Blv. No. 107
**Department of Cybernetics and Economic Statistics

(e-mail:ancaiuliana.nicolae@gmail.com)
Doctoral School of Bucharest, University of Economic Studies

Abstract: The paper deals with the logic and implementation of an efficient Sudoku solver,
successfully tested for classic grids of small and medium difficulty. It relies on an efficient 3-d
array (9x9x10) containing information on grid’s content and on possible candidates for its
unsolved cells at every computation step. The use of auxiliary (9x9) matrices containing flags
related to restrictions associated with lines, columns and zones, along with execution branches that
implement strategies from gamers’ world (known as „x-wing”, „y-wing”, „hiden/naked
pairs/triples”, „box-to-line/column restrictions” etc.) and with a minimal (ideally zero) segment of
backtracking code, exhibited very good runtimes (not exceeding 0.4 s for classic grids of medium
difficulty and respectively 0.15 s for easy puzzles) as compared to usually runtimes of seconds
reported by literature. The solver can be easily adapted to solve grids with additional restrictions
(e.g. restrictions corresponding to diagonals, symmetric grids etc.).

Keywords: Constraing satisfaction problems, Backtracking, Binary arrays, Computer programming

1. INTRODUCTION

Sudoku puzzle with 9 rows and columns containing digits
from 1 to 9, originated in Japan, whose popularity is
especially remarkable among gamers all over the world
since 2005. The rows/columns are divided into 9 3x3
zones (marked with thicker frames on the grid). In its
original (classic) form, restrictions are imposed such as no
duplicates are allowed along a line, a column and
respectively inside a zone.

In one of their studies on Sudoky puzzles (Ercsey-Ravasz
and Toroczkai , 2012) the authors began by reminding that
the mathematical structure of these puzzles is akin to hard
constraint satisfaction problems lying at the basis of many
applications (including ground-state problem of glassy spin
systems , protein folding etc.) and proved that the difficulty
of Sudoku translates into a transient chaotic behavior
exhibited by continuous-time dynamical systems.

Mervyn King (King, 2010), used a Sudoku grid to
illustrate why “the mess in the world economy is unlikely
to get any better”. Its explanation on chosing this way of
modelling is that the high-saving countries (e.g. China,
Japan) and the low-saving countries (e.g. USA, UK,
Spain) are dependent on the choices the other group of
countries make. Other relevant examples for Sudoku
puzzles’ practical applications in Economics are provided
by Academia (University of Missouri, 2012).

As a general rule, the fewer clues are given, the harder the
puzzle is, but this is not universally true (Rosenhause and
Taalman, 2011). One of the most famous exceptions for this
rule is the so called “Platinum Blonde” grid, (Sudoku
Players Forum, 2009) where the apparently confortable

number of initial clues – 21, is in contradiction with is ultra-
hard level of difficulty. Fig. 1 reveals that more than 7
minutes were necessary to solve the above mentioned grid
with an automatic solver (available at tirl.org/software/
sudoku) which otherwise for medium difficulty and easy
grids exhibited maximal runtimes under 100 seconds.
A systematic study on this aspect was made in (Ercsey-
Ravasz and Toroczkai , 2012) where it was proved that
the escape rate �, an invariant of transient chaos, provides
a scalar measure of the puzzle's hardness that correlates
well with human difficulty ratings.

Fig. 1. A Sudoku grid famous for its difficulty (Platinum
Blonde). The clues are marked with asterisks.

25

Accordingly, � = �log10 � can be used to define a
“Richter”- type scale for puzzle hardness, with easy
puzzles having 0 < � � 1, medium ones 1 < � � 2, hard
with 2 < � � 3 and ultra-hard with � > 3. The example
from Fig. 1 falls into the last category.

2. ALGORITHMS – STATE OF THE ART

2.1. Fundaments and Theoretic Support

If less then 17 clues are provided, then one can say with
certitude that the grid has more than one possible solution.
The total number of possible combinations of digits on a
standard Sudoku grid is 6,670,903,752,021,072,936,960.
Because many of these combinations could be the same as
another, only backwards or rotated, the number of real
possible combinations drops to 3,359,232. This is
essentially the total number of possible Sudoku puzzles
(wiki.answers, 2005).

Due to the significantly large number of applicability
domains of this puzzle (in both its classic and respectively
modified forms – when additional restrictions are
imposed to solutions), many theorists contributed to the
mathematic support required by various Sudoku-related
models (Lynce and Quaknine, 2006), (Simonis, 2005),
(Shan and Yap , 2008), (Rosenhause and Taalman, 2011),
(Eppstein, 2005) a.o.

Backtracking techniques represent a common approach,
often used as study case for computing techniques in
universities (Stanford University , 2012) when intending
to solve classic grids with no aditional restrictions. These
techniques guarantee the detection of all possible
solutions, but often involve significant runtimes.

The huge interest in solving Sudoku puzzles all over the
world with backtracking techniques is revealed by a great
number of programs and routines (many available online),
developed in various programming environments: in Java
(Armstrong Atlantic State University , 2013), in PHP
(Eferanto, 2008), in JavaScript (Detar, 2012), in Python
(Python Fiddle, 2012) etc.

2.2. Boolean Representations

A boolean representation which shares the same
principles with the one used by our algorithms is depicted
by Fig. 2 (Ercsey-Ravasz and Toroczkai , 2012). The
difference consists in flaging the unrefined possibility of a
certain cell to host a certain digit : our algorithms use 1-s
instead of 0-s firstly and change 1-s in 0-s as soon as the
algorithm detects restrictions.

2.3. Useful Schemas for Indirect Restrictions Detection

The huge popularity of Sudoku puzzles explaines the
efforts behind numerous papers and web pages dedicated
to various techniques used to solve them. We found at
(Sudokuwiki, 2011) very useful, documented and well-
structured information about various schemas which can
provide additional restrictions, needed to unblock the
process of solutions’ deduction when direct eliminating
techniques become temporarily unusable. If correctly
implemented in performing code, these techniques can
refine very much the set of “candidates” – ideally up to
the point when backtracking techniques are no longer
needed, therefore saving significant computer resources
(especially runtime). An interesting classification of these
techniques can be found at http://www.sudokuwiki.org,
where the strategies’ suggestive names (“tough”,
“diabolical” and respectively “extreme”) are used to
reveal how difficult the grids to which they are addressed
are.

For the beginning we implemented some of the basic
techniques and tough strategies in our algorithms, namely
those required to solve classic grids with small or medium
degrees of difficulty very fast, with the price of acceptable
increased algorithm complexity and additional memory
consumptions. The elaborated algorithms were also
successfully used on grids with additional restrictions.

3. IMPLEMENTATION OF ORIGINAL ALGORITHMS
3.1. Main Data Structures

The main structure used by algorithm consists in a 3-D
array c, whose first two indices are used for the
identification of a certain location (“place”) from the grid.

Fig. 2. Boolean representation. (a) a typical puzzle with bold digits as clues ; (b) Setup of the Boolean representation in
a 9 x 9 x9 grid; (c) Layer L4 of the puzzle (the one containing the digit 4) with 1-s in the location of the clues and the
regions blocked out for digit 4 by the presence of the clues (shaded area).

26

The third dimension from this array is used to hold
information about the digits that can be placed in the
location until the reaching of a certain stage from the
solving chain (according to the restrictions imposed by
the already occupied locations over lines, columns and
zones and, if applicable, by other additional restrictions,
such as the main and secondary diagonals from the grid).

Fig. 3. Main steps of the algorithm.

For example if c(2,4,3)=1 and c(2,4,6)=1 whilst the rest of
components following the pattern c(2,4,*) are zero, it
means that the cell from the second line and fourth
column can host only the digits 3 and 6 and the solution
for this place is not known yet. On the other hand, a set
of values c(i,j,k)=0 for k=1...9 and c(i,j,10)=7 means
“either the place from the line i and column j was given as
an initial clue and contains the digit 7, or the algorithm
deduced that the digit from this place is 7”.

Except for the indices following the pattern c(*,*,10),
reserved for the storing of places’ solutions, all the values
for the third dimension of c are initially set to 1. The
locations of the first 0-s overwriting them are provided by
the initial clues of the grid to be solved. When the
algorithm advances, other 0-s are imposed by restrictions
until the final solution is derived (all c(*,*,1...9) are zero
and c(*,*,10) contain the solution).

The overwriting of 0-s from the third dimension will be
addressed from this point forward as “transitions imposed
by restrictions” and will be denoted by TIRs.

Additional vectors, with significant names (“line”,
“column” and “zone”) are used to store flags used by the
algorithm any time new restrictions can be imposed, as
follows: line(3,7)=1 if the digit 7 is present on the third
line and line(3,7)=0 otherwise.

3.2. Algorithm Description

The main steps of the algorithm are presented by Fig. 3.
When no new TIRs can be deduced within the cycle “for
each digit”, special tests are accomplished.

A first special test focuses on the identification and
exploiting of restrictions involved by the condition known
as “Pointing pairs, pointing triples “ (Fig. 4 , Sudokuwiki,
2011) .

Fig. 4. Example of grid where two conditions of type
“Pointing pairs, pointing triples” are accomplished

The rule from this context is “If a pair or triple of digits
“x” can reside only on a certain line/column from a certain
zone z, it forbits the presence of “x” in the places from the
same line/column in the grid outside z”. This type of
restrictions is implemented as follows:

reads the initial clues;
operates TIRs according to the line, column and zone related
restrictions imposed by the initial clues ;
while (unsolved cells)
 for each unsolved cell (i,j)

 if �
�

�
�
�

� =�
=

1),,(
9

1k
kjic then

 find k for which c(i,j,k)=1;
 c(i,j,10)= k ;
 /*(exclusivity of the tested digit in cell(i,j)
 cell (i,j) is solved)*/
 c(i,j,1...9)=0;
 break;

 end if;
 end for;
 for each digit in {1,2..,9}
 operates newly derived line related TIRs;
 operates newly derived column related TIRs;
 operates newly derived zone related TIRs;
 for each cell (i, j)

 if �
�

�
�
�

� =�
=

1)_:,,(
9

1i
digittestedic then

 find j for which c(i,j,tested_digit)=1;
 c(i,j,10)=tested_digit;/*(exclusivity of the tested
 digit on line i was detected, cell (i,j) is solved)*/
 c(i,j,1...9)=0;
 break;
 end if;

 if �
�

�
�
�

� =�
=

1)_,(:,
9

1i
digittestedjc then

 find i for which c(i,j,tested_digit)=0;
c(i,j,10)=tested_digit;/*(exclusivity of the tested
digit on column j was detected, cell (i,j) is solved)*/

 c(i,j,1...9)=0;
 break;
 end if;

 if
�
�
�

�

�

�
�
�

�

�
=�

∈
∈

1)_,,(
),(1
),(1

11

jizonej
jizonei

digittestedjic then

 find the pair (i1,j1) for which c(i1,j1,tested_digit)=0
 within zone(i,j);
 c(i1,j1,10)=tested_digit; /*(exclusivity of the
 tested digit on zone including the cell (i1,j1)
 was detected, cell (i1,j1) is solved)*/
 c(i1,j1,1...9)=0;
 end if;
 end for;
 end for;
 /*accomplish special tests if no new solution found*/
end while;

27

The “line-to-box” and respectively “column-to-box”
restrictions are depicted by Fig. 5 (Sudokuwiki, 2011). In
this example, the digit “2” can appear on the first line
only within the zone 2, and therefore the cells from zone 2
not belonging to the first line cannot host 2.

Fig. 5. Example for “line-to-box” restriction.

The restrictions of type “line (or column) to box” are
implemented as follows:

Other restrictions that prooved to be useful are the so
called “hiden/naked pairs, hiden/naked triples”. An
example for their application is presented in Fig. 6
(Sudokuwiki, 2011). In this example, the pair (1,6),
appearing for the first zone only on the first line
(providing that neither 1 nor 6 appear in any other place

Fig. 6. Example for “naked pairs” restriction.

from this zone), restricts all the remaining cells from this
line such as they can not host none of the digits from the
pair.

The implementation of this restriction for lines is:

Similar restrictions are imposed by hiden/naked pairs
along columns (in this case restrictions of type
c(*,j,digit1) and c(*,j,digit2) are imposed).

The presence of hiden/naked pairs within a certain zone zk
is detected with conditions cond1 which can be written as
follows:
 () () 22,,1,,

,,
==== ��

∈∈ kzzkzz zji
zz

zji
zz digitjicdigitjic (1)

The second condition here requires that all jz-s for which
c(iz,jz,digit1)=1 match all jz-s for which c(iz,jz,digit2)=1.
In this case the restrictions which can be imposed are:
c(iz,jz,digit1)=0 and c(iz,jz,digit2)=0 for all {iz,jz}
belonging to zk.

A special combination of coordinates of places and their
content is known in gammers’ world as “x-wing”, an
example being given in Fig. 7 (Sudokuwiki, 2011).

A x-wing is delimited by places forming a rectangle, each
of them hosting a certain digit x (in this example x=2). On
two of the diagram’s “units“ of the same type (columns or
lines) which overlap a pair of similar units forming the
rectangle’s sides, x appears only twice (in this example 2

for each digit1 in {1,2,...9}
 for each digit2 in {1,2,...9}
 for each line i

 cond1= ��
�

�
��
�

�
====��

==
2)2:,,()1:,,(

9:19:1 jj
digiticdigitic ;

 cond2 is true if all j-s for which c(i,j,digit1)=1 match
 all j-s for which c(i,j,digit2)=1;
 if (cond1 and cond2) then */the combination
 (digit1,digit2) forms a hiden/naked pair along line i
 and imposes restrictions over line i except the speci-
 fic combinations (i,jnaked) where pairs appear:*/
 c(i,:,digit1)=0;c(i,:,digit2)=0;
 restore the old values of cells involved in pair;
 end if; end for; end for; end for;

for each digit in {1,2,...9}
 for each zone z(m)
 for each line i from z(m)

if ()
()
� �
∈

=
mzj

digittestedicdigittestedjic _:,,)_,,(then

 /*impose restrictions over zone:*/
 c(i1,j,tested_digit)=0 for (all ()mzj ∈ and () iimzi ≠∈ 11 ,)
 end if; end for;
 for each column j from z(m)

if ()
()
� �

∈

=
mzi

digittestedjcdigittestedjic _,:,)_,,(then

 /*impose restrictions over zone: */
 c(i,j1,tested_digit)=0 for (all ()mzi ∈ and () jjmzj ≠∈ 11 ,)
 end if; end for;
 end for; end for;

for each zone z(m)

if
()

�
∈

==
izoneji

ordigittestedjic
1,1

11)3(2)_,,(then

 find the set of i1 and j1 for which c(i1,j1,tested_digit)=1;
 if i1-s are identic then
 /* impose restrictions over line i1*/
 c(i1,*,tested_digit)=0 excepting the columns
 belonging to z(m)
 else
 if j1-s are identic then
 /* impose restrictions over column j1*/
 c(*,j1,tested_digit)=0 excepting the lines
 belonging to z(m)
 end if; end if; end if; end for;

28

Fig. 7. Example for x-wing forming and restrictions.

appears only twice along the columns 5 and 8 respectively,
which overlap the x-wing’s vertical sides) and both
apparitions are in x-wing corners. The restrictions imposed
by x-wing follow the rule (Sudokuwiki, 2011) “when there
are only two candidates for a value, in each of 2 different
units of the same kind, and these candidates lie also on 2
other units of the same kind, then all other candidates for
that value can be eliminated from the latter two units”. In
this example, 2-s are forbitten in the shadded places, which
follow the upper and lower sides of the x-wing.

The implementation of x-wing conducted by lines is as
follows:

Finally, the last special test implemented by our algorithm
is related to the so-called “y-wings”, an example being
given in Fig. 8 (Sudokuwiki , 2011).
The principle behind the forming of this special structure
is as follows: a certain place p (the “pivot”) can host
exactly 2 digits (p1 and p2). The other two places y1 and
y2, also hosting only a pair of digits, can “see” p and do
not “see” each other. In this context “seeing” means to
share a certain unit (line, column or zone). y1 contains
exactly the digits (p1, r) and y2 contains exactly the digits
(p2, r).

Fig. 8. Example for y-wing forming and restrictions.

Then r is restricted to appear in any place pr which can
see both places y1 and y2.

In the given example, the place identified by the
coordinates (9,2) is the pivot, the places with coordinates
(1,2) and respectively (7,1) are the y-wing’s branches and
the restricted digit is 6, restrictions appearing in the places
with coordinates (2,1) and (2,3).

The implementation of y-wing was made as follows:

identify all places p(l) which can host exactly 2 digits
 for all possible triples of places (p(l1), p(l2) and p(l3))
 identify their coordinates from the current position
 following the rule: i(l)=(int) (l/9); j(l)=l-(i-1)*9;

 if the triple (p(l1), p(l2) , p(l3)) forms a y-wing with
 p(l1) as pivot then
 determine the restricted digit r and all p(lr) playing
 the role of pr ;

 for each p(lr)
determine i(lr)=(int) (lr/9); j(lr)=lr-(i-1)*9;

 if p(lr) sees both p(l2) and p(l3)
 //impose restrictions according to y-wing
 c(ir,jr,r)=0;
 end if;
 end for;
 end if;
 end for;

4. TESTS

4.1. Solving Easy Classic Diagrams

Our first tests were done considering the grids from Figs.
9-11, rated as easy because their solving does not require
strategies for the imposing of indirect restrictions. The
clues are represented with bold fonts.

A natural approach is to evaluate firstly the number of
occurances for every distinct digit in the set of input data
(clues). Considering the grid from Fig. 9, this means: 5
occurances of digit 1, 3 occurances of digit 2 and so on.

If the analysis within the while cycle from Fig. 3 is made

for each digit in {1,2,...9}
 for each pair of lines (i1,i2) , i1=1...8, i2=i1+1...9

��
�

�
��
�

�
===== � � 2)_:,,2()_:,,1(1 digittestedicdigittestedicc

 if c1 then
 find the pairs (j1_i1,j2_i1) and (j1_i2,j2_i2)
 corresponding to lines i1 and i2 where the flags for
 tested_digit were 1;
 if maching pairs of js (corners formed) then
 /*x-wing with corners (i1,j1), (i1,j2), (i2,j1), (i2,j2)
 impose restrictions over columns */
 c(:,j1,tested_digit)=0 ; c(:,j2,tested_digit)=0 ;
 //recover corners
 c(i1,j1,tested_digit)=1; c(i1,j2,tested_digit)=1 etc.
 end if; end if;
 end for; end for;

29

2 1 7 4 8 3 6 5 9
5 3 8 6 1 9 2 4 7
9 4 6 7 5 2 3 8 1
4 2 9 8 7 1 5 6 3
1 6 5 2 3 4 9 7 8
8 7 3 9 6 5 1 2 4

7 9 2 1 4 6 8 3 5
3 8 1 5 2 7 4 9 6
6 5 4 3 9 8 7 1 2

Fig. 9. First example of easy grid (22 clues).

7 4 6 8 1 9 5 3 2
3 5 2 6 7 4 8 1 9
9 8 1 2 5 3 6 4 7
5 9 4 1 3 2 7 6 8
6 7 3 5 9 8 1 2 4
1 2 8 7 4 6 9 5 3
2 1 9 4 6 7 3 8 5
4 6 7 3 8 5 2 9 1
8 3 5 9 2 1 4 7 6

Fig. 10. Second example of easy grid (18 clues).

3 6 4 2 1 8 7 9 5
7 5 1 4 6 9 8 3 2
2 9 8 5 3 7 4 6 1
9 4 2 6 8 1 3 5 7
6 8 3 7 5 4 1 2 9
1 7 5 9 2 3 6 4 8
5 1 9 3 7 6 2 8 4
4 3 7 8 9 2 5 1 6
8 2 6 1 4 5 9 7 3

Fig. 11. The third example of easy grid (17 clues).
such as to consider firstly as “tested digit” the digits found
as having the greatest number of occurancies, the
conditions of exclusivity which result into cells’
solutioning will be derived faster and easier, therefore
providing an additional guarantee for the algorithm’s
possibility to find incrementaly new solutions up to the
solutioning of the entire grid.
For the grid depicted by Fig. 9, separate tests were
performed considering that the cycle “for each digit...”
will consider the following sequence of tested digits : 1, 6,
2, 3, 8, 7,9,4,5.

The algorithm was tested for many easy classic grids with
at least 17 clues (for which a single solution exists) and
no failures were recorded.

The runtimes required to solve the grids from Figs. 8...10,
whose number of clues varies from 17 to 24 are gathered
in Table 1. In order to diminish as much as possible the

Table 1. Runtimes for standard classic easy grids
Diagram

identification
Type of test

sequence Mean runtime [s]

Fig. 9. Default 0.070
Calculated 0.073

Fig. 10. Default 0.116
Calculated 0.109

Fig. 11. Default 0.100
Calculated 0.108

influence of the programming environment’s multi-tasking
features over the real performances of the algorithm, the
runtimes were evaluated as mean values over 10 distinct
runnings. The analysis of data from Table 1 proves the
algorithm’s efficiency: very small runtimes (around 0.1 s)
were required to solve grids with the minumum number of
clues required by grids with a single solution. Obviously
smaller runtimes were recorded when the 1st grid was
solved, as more clues were provided. No rule can be
derived relative to the relation between the runtimes
corresponding to the cases relying on the default test
sequence (1,2,3...,9) and respectively to the cases using test
sequences imposed by the distribution of clues’ values
(refered from this point forward as “calculated test
sequences”). However small differences are recorded
between both cathegories of runtimes. The explanation
consists in the unpredictable relation between two runtimes
T1 and T2: T1 represents the runtime saved during the
execution of the algorithm’s main cycle due to easier and
faster derivings of TIRs whilst T2 represents the runtime
wasted with the imposed test sequence evaluation. The
unpredictibility is generated by the random selection of
both characteristics of clues: values and positions
respectively.

4.2. Solving Classic Diagrams of Medium Difficulty

Many tests were made on classic grids with a medium
degree of dificulty, where strategies as those implemented
by our algorithm must be used to deduce indirect
restrictions over the content of (sets of) places. For a
significant percent of tests, the special strategies were
sufficient to find the solution without the use of the
backtracking branches from our algorithm. A first
example for this kind of diagrams is depicted by Fig. 12.

For this case, the efficiency of branches dealing with x-
wing scenarios implemented by our algorithm is depicted

4 5 9 7 1 6 3 8 2
6 1 2 3 8 9 7 4 5
8 7 3 2 4 5 1 6 9
3 8 7 9 6 4 5 2 1
5 2 4 1 7 3 6 9 8
1 9 6 8 5 2 4 3 7
9 6 5 4 2 1 8 7 3
7 3 1 6 9 8 2 5 4
2 4 8 5 3 7 9 1 6

Fig. 12. First example of grid with medium difficulty.

30

Fig. 13. Example from execution: indirect elimination
through x-wing.

Fig. 14. Example from execution : indirect elimination
through y-wing.
by Fig. 13, where a x-wing determined by the digit 7
along the lines 2 and 6 and bordered by the columns 7
and 9 imposes the restriction “7 cannot appear in the place
with coordinates (4,7)” .

The efficiency of branches dealing with y-wings scenarios
is depicted by Fig. 14, where the pivot is surounded by an
ellipse, the y-wing branches are marked by rectangles and
the cell marked by a rhomb is restricted – it is not allowed
to contain the digit 2.

Still for certain grids (as that depicted by Fig. 15 –
classified as “tough”), the use of the backtracking branch
is compulsory.

We considered usefull to provide in detail the evolution of
execution (Table 2). To denote the restrictions, we used the
following codes: lc = derived from single possible
occurance along line or column; us=unique solution (single
possibility in place after restrictions’ applying); z= unique
solution in zone; B – solution selected by backtracking.

3 6 9 2 1 8 4 7 5
2 1 5 7 4 9 8 6 3
4 8 7 6 3 5 9 1 2
7 5 4 8 6 1 2 3 9
6 3 1 9 2 4 7 5 8
9 2 8 3 5 7 6 4 1
1 7 3 4 8 2 5 9 6
5 4 2 1 9 6 3 8 7
8 9 6 5 7 3 1 2 4

Fig. 15. Second example of grid with medium difficulty.
Beginning with the 16-th step (marked with *), the use of
special strategies was compulsory, and beginning with the
26-th step (marked with **), the backtracking branch was
activated, as the scenario from Fig. 16 was achieved.

3 16 9 26 18 258 4 7 25
2 146 5 7 14 9 8 16 3
14 8 7 246 3 25 9 16 25
7 5 4 8 6 1 2 3 9
6 13 13 9 2 4 7 5 8
9 2 8 3 5 7 6 4 1
14 1347 13 24 478 28 5 9 6
5 49* 2 1 49 6 3 8 8
8 79 6 5 79 3 1 2 4

Fig. 16. Partial solution for the grid from Fig. 15, when
backtracking becomes operational.

The presence of a special rectangular construction
(marked with bolded fonts in Fig. 16) makes the
algorithm to choose between two alternatives for the place
positioned at the coordinates (8, 2): 4 and respectively 9.
Only the first option generates a valid solution.

An analysis of the runtimes required for the solutioning of
both analysed medium difficulty grids revealed a mean
runtime of 0.0936 s corresponding to the grid from Fig.
14 and respectively of 0.376 s for the grid from Fig. 15,
revealing the additional effort in the case when the
backtracking branch was used.

Table 2. Places solutions along with the restrictions which yielded them for grid from Fig. 15.
Detection

order
Index
line

Index
column

Solution Restriction
code

Detection
order

Index
line

Index
column

Solution Restriction
code

Detection
order

Index
line

Index
column

Solution Restriction
code

1 4 3 4 lc 18 9 8 2 us 35 7 2 7 us
2 4 4 8 us 19 8 8 8 us 36 9 2 9 us
3 5 7 7 us 20 9 4 5 us 37 5 2 3 us
4 6 1 9 us 21 9 6 3 us 38 7 5 8 us
5 4 6 1 us 22 8 3 2 lc 39 1 5 1 us
6 5 8 5 us 23 2 3 5 lc 40 7 6 2 us
7 6 4 3 us 24 8 1 5 lc 41 1 2 6 us
8 4 9 9 us 25 2 9 3 us 42 3 6 5 us
9 5 5 2 us 26** 3 5 3 lc 43 7 4 4 us

10 6 6 7 us 27 8 2 4 B 44 1 4 2 us
11 6 7 6 us 28 2 5 4 lc 45 2 2 1 us
12 7 9 6 lc 29 7 1 1 us 46 3 9 2 us
13 1 8 7 lc 30 8 5 9 us 47 1 6 8 us
14 3 7 9 lc 31 3 1 4 us 48 2 8 6 us
15 8 7 3 z 32 7 3 3 us 49 3 4 6 us

16* 2 7 8 lc 33 9 5 7 us 50 1 9 5 us
17 9 1 8 us 34 5 3 1 us 51 3 8 1 us

31

As both runtimes were very small (under 0.4 s), one can
conclude that even for medium difficulty grids the
algorithm is very efficient from the execution point of
view. The moderate additional memory required by the
auxiliary data structures used to improve the runtime
efficiency and to implement the special strategies that help
avoiding the backtracking up to a point when it should be
used to select between a significantly reduced set of options
(or should not be used at all), let us conclude that this
algorithm represents a reliable option for runtime
applications where the time is critical and the grids to be
solved are known as having a medium degree of difficulty.

CONCLUSIONS

The logic, implementation, testing and evaluation of an
efficient Sudoku solver, successfully tested for classic
grids of small and medium difficulty, were presented.

An efficient 3-d array containing information on grid’s
content and on possible candidates for its unsolved cells
at every computation step is used. Auxiliary matrices
containing flags related to restrictions associated with
lines, columns and zones are used, along with execution
branches that implement special strategies for indirect
applying of restrictions (known as „x-wing”, „y-wing”,
„hiden/naked pairs”, „box-to-line restrictions” etc.). These
techniques result into the reducing (usually up to zero) of
the necessity to use the segment of backtracking code.
This is revealed by the obtaining of very good runtimes
(not exceeding 0.4 s for classic grids of medium difficulty
and respectively 0.15 s for easy puzzles) as compared to
usually runtimes of seconds reported by literature.

The solver can be easily adapted to solve grids with
additional restrictions (e.g. restrictions corresponding to
diagonals, symmetric grids etc.).

The moderate additional memory required by the auxiliary
data structures used to improve the runtime efficiency and
to implement the special indirect restrictioning-related
strategies let us conclude that this algorithm represents a
reliable option for runtime applications where the time is
critical and the grids to be solved are known as having a
medium degree of difficulty.

REFERENCES
Ercsey-Ravasz, M. and Toroczkai, Z. (2012), The Chaos

Within Sudoku, Nature Oct. 2012, article no. 725,

available on line at http://arxiv.org/pdf
/1208.0370v1.pdf.

University of Missouri (2012), “Sudoku in Economics”,
available at web.missouri.edu/~dls6w4/
Word/EconSudoku.docx

King, M. (2010) “Mervyn King: Sudoku for Economists”,
available at http://www.keyscorner.com/archives
/2010/01/21/mervyn-king-sudoku-for-economists/

Rosenhause, J. and Taalman, L. (2011), Taking Sudoku
Seriously: The Math Behind the World's most Popular
Pencil Puzzle , Oxford University Press, New York.

Sudoku Players Forum (2009), The Hardest Sudokus,
available at http://forum.enjoysudoku.com/the-
hardest-sudokus-new-thread-t6539.html.

Wiki.answers (2005) http://wiki.answers.com/Q/
How_many_possible_solutions_are_there_for_a_single_
sudoku_game.

Lynce, I. and Ouaknine, J. (2006), Sudoku as a SAT
problem, Proceed. of AIMATH 06, pp. 121-130.

Simonis, H. (2005), Sudoku as a Constraint Problem,
CP Workshop on Modeling and Reformulating Cons-
traint Satisfaction Problems , pp. 13-27.

Shan, G. and Yap, R. (2008), Solving puzzles (eg. Sudoku)
and other combinatorial problems with SAT, Nurop
2008, available at http://www.nus.edu.sg/ nurop/ 2009/
SoC/GaoShan_Solving_Puzzles__Eg._Sudoku_and _
other_Combinatorial_Problems_with_SAT.pdf.

Eppstein, D. (2005), Nonrepetitive paths and cycles in
graphs with application to Sudoku, ACM Computing
Research Repository .

Sudokuwiki (2011), http://www.sudokuwiki.org/
Intersection_Removal

Stanford University (2013), Lecture 11 - Programming
Abstractions, available at http://www.youtube.com/
watch? v=p-gpaIGRCQI

Armstrong Atlantic State University (2013),
http://www.cs.armstrong.edu/liang/intro7e/ book/

 Sudoku.java.
Python Fiddle (2012), Shortest Sudoku Solver in Python,

available at http://pythonfiddle.com/shortest-sudoku-
solver-in-python/.

Detar, C. (2012), Automatic Sudoku Solver, available at
tirl.org.software.sudoku

Eferanto, E. (2008), Sudoku creator/solver with PHP,
available at http://www.emanueleferonato.com/
2008/12/09/sudoku-creatorsolver-with-php.

32

