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Abstract: The paper deals with the logic and implementation of an efficient Sudoku solver, 
successfully tested for classic grids of small and medium difficulty. It relies on an efficient 3-d 
array (9x9x10) containing information on grid’s content and on possible candidates for its 
unsolved cells at every computation step. The use of auxiliary (9x9) matrices containing flags 
related to restrictions associated with lines, columns and zones, along with execution branches that 
implement strategies from gamers’ world (known as „x-wing”, „y-wing”, „hiden/naked 
pairs/triples”, „box-to-line/column restrictions” etc.) and with a minimal (ideally zero) segment of 
backtracking code, exhibited very good runtimes (not exceeding 0.4 s for classic grids of medium 
difficulty and respectively 0.15 s for easy puzzles) as compared to usually runtimes of seconds 
reported by literature. The solver can be easily adapted to solve grids with additional restrictions 
(e.g. restrictions corresponding to diagonals, symmetric grids etc.).  
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1. INTRODUCTION 

Sudoku puzzle with 9 rows and columns containing digits 
from 1 to 9, originated in Japan, whose popularity is 
especially remarkable among gamers all over the world 
since 2005. The rows/columns are divided into 9 3x3 
zones (marked with thicker frames on the grid). In its 
original (classic) form, restrictions are imposed such as no 
duplicates are allowed along a line, a column and 
respectively inside a zone. 

In one of their studies on Sudoky puzzles (Ercsey-Ravasz 
and  Toroczkai , 2012) the authors began by reminding that 
the mathematical structure of these puzzles is akin to hard 
constraint satisfaction problems lying at the basis of many 
applications (including ground-state problem of glassy spin 
systems , protein folding etc.) and proved that the difficulty 
of Sudoku translates into a transient chaotic behavior 
exhibited by continuous-time dynamical systems.  

Mervyn King (King, 2010), used a Sudoku grid to 
illustrate why “the mess in the world economy is unlikely 
to get any better”. Its explanation on chosing this way of 
modelling is that the high-saving countries (e.g. China, 
Japan) and the low-saving countries (e.g. USA, UK, 
Spain) are dependent on the choices the other group of 
countries make. Other relevant examples for Sudoku 
puzzles’ practical applications in Economics are provided 
by Academia (University of Missouri, 2012).  

As a general rule, the fewer clues are given, the harder the 
puzzle is, but this is not universally true (Rosenhause and 
Taalman, 2011). One of the most famous exceptions for this 
rule is the so called “Platinum Blonde” grid, (Sudoku 
Players Forum, 2009) where the apparently confortable 

number of initial clues – 21, is in contradiction with is ultra-
hard level of difficulty. Fig. 1 reveals that more than 7 
minutes were necessary to solve the above mentioned grid 
with an automatic solver (available at tirl.org/software/ 
sudoku) which otherwise for medium difficulty and easy 
grids exhibited maximal runtimes under 100  seconds.  
A systematic study on this aspect was made in (Ercsey-
Ravasz and  Toroczkai , 2012) where it was proved that 
the escape rate �, an invariant of transient chaos, provides 
a scalar measure of the puzzle's hardness that correlates 
well with human difficulty ratings. 

Fig. 1. A Sudoku grid famous for its difficulty (Platinum 
Blonde). The clues are marked with asterisks. 
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Accordingly, � = �log10 � can be used to define a 
“Richter”- type scale for puzzle hardness, with easy 
puzzles having 0 < � � 1, medium ones 1 < � � 2, hard 
with 2 < � � 3 and ultra-hard with � > 3. The example 
from Fig. 1 falls into the last category. 

2. ALGORITHMS – STATE OF THE ART 

2.1. Fundaments and Theoretic Support 

If less then 17 clues are provided, then one can say with 
certitude that the grid has more than one possible solution. 
The total number of possible combinations of digits on a 
standard Sudoku grid is 6,670,903,752,021,072,936,960. 
Because many of these combinations could be the same as 
another, only backwards or rotated, the number of real 
possible combinations drops to 3,359,232. This is 
essentially the total number of possible Sudoku puzzles 
(wiki.answers, 2005).  

Due to the significantly large number of applicability 
domains of this puzzle (in both its classic and respectively 
modified forms – when additional restrictions are 
imposed to solutions), many theorists contributed to the 
mathematic support required by various Sudoku-related 
models (Lynce and Quaknine, 2006), (Simonis, 2005), 
(Shan and Yap , 2008), (Rosenhause and Taalman, 2011), 
(Eppstein, 2005) a.o.  

Backtracking techniques represent a common approach,  
often used as study case for computing techniques in 
universities (Stanford University , 2012) when intending 
to solve classic grids with no aditional restrictions. These 
techniques guarantee the detection of all possible 
solutions, but often involve significant runtimes.  

The huge interest in solving Sudoku puzzles all over the 
world with backtracking techniques is revealed by a great 
number of programs and routines (many available online),  
developed in various programming environments: in Java 
(Armstrong Atlantic State University , 2013), in PHP 
(Eferanto, 2008), in JavaScript (Detar, 2012), in Python 
(Python Fiddle, 2012) etc. 

 

2.2. Boolean Representations  

A boolean representation which shares the same 
principles with the one used by our algorithms is depicted 
by Fig. 2 (Ercsey-Ravasz and  Toroczkai , 2012). The 
difference consists in flaging the unrefined possibility of a 
certain cell to host a certain digit : our algorithms use 1-s 
instead of 0-s firstly and change 1-s in 0-s as soon as the 
algorithm detects restrictions.    

2.3. Useful Schemas for Indirect Restrictions Detection  

The huge popularity of Sudoku puzzles explaines the 
efforts behind numerous papers and web pages dedicated 
to various techniques used to solve them. We found at 
(Sudokuwiki, 2011)   very useful, documented and well-
structured information about various schemas which can 
provide additional restrictions, needed to unblock the 
process of solutions’ deduction when direct eliminating 
techniques become temporarily unusable. If correctly 
implemented in performing code, these techniques can 
refine very much the set of “candidates” – ideally up to 
the point when backtracking techniques are no longer 
needed, therefore saving significant computer resources 
(especially runtime). An interesting classification of these 
techniques can be found at http://www.sudokuwiki.org, 
where the strategies’ suggestive names (“tough”, 
“diabolical” and respectively “extreme”) are used to 
reveal how difficult the grids to which they are addressed 
are. 

For the beginning we implemented some of the basic 
techniques and tough strategies in our algorithms, namely 
those required to solve classic grids with small or medium 
degrees of difficulty very fast, with the price of acceptable 
increased algorithm complexity and additional memory 
consumptions. The elaborated algorithms were also 
successfully used on grids with additional restrictions.  

3. IMPLEMENTATION OF ORIGINAL ALGORITHMS 
3.1. Main Data Structures  

The main structure used by algorithm consists in a 3-D 
array c, whose first two indices are used for the 
identification of a certain location (“place”) from the grid. 

 
Fig. 2. Boolean representation. (a) a typical puzzle with bold digits as clues ; (b) Setup of the Boolean representation in 
a 9 x 9 x9 grid; (c) Layer L4 of the puzzle (the one containing the digit 4) with 1-s in the location of the clues and the 
regions blocked out for digit 4 by the presence of the clues (shaded area). 
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The third dimension from this array is used to hold 
information about the digits that can be placed in the 
location until the reaching of a certain stage from the 
solving chain (according to the restrictions imposed by 
the already occupied locations over lines, columns and 
zones and, if applicable, by other additional restrictions, 
such as the main and secondary diagonals from the grid). 

 
 

Fig. 3. Main steps of the algorithm. 

For example if c(2,4,3)=1 and c(2,4,6)=1 whilst the rest of  
components following the pattern c(2,4,*) are zero, it 
means that the cell from the second line and fourth 
column can host only the digits 3 and 6 and the solution 
for this place is not known yet.  On the other hand, a set 
of values c(i,j,k)=0 for k=1...9 and c(i,j,10)=7 means 
“either the place from the line i and column j was given as 
an initial clue and contains the digit 7, or the algorithm 
deduced that the digit from this place is 7”.  

Except for the indices following the pattern c(*,*,10), 
reserved for the storing of places’ solutions, all the values 
for the third dimension of c are initially set to 1. The 
locations of the first 0-s overwriting them are provided by 
the initial clues of the grid to be solved. When the 
algorithm advances, other 0-s are imposed by restrictions 
until the final solution is derived (all c(*,*,1...9) are zero 
and c(*,*,10) contain the solution).  

The overwriting of 0-s from the third dimension will be 
addressed from this point forward as “transitions imposed 
by restrictions” and will be denoted by TIRs. 

Additional vectors, with significant names (“line”, 
“column” and “zone”) are used to store flags used by the 
algorithm any time new restrictions can be imposed, as 
follows: line(3,7)=1 if the digit 7 is present on the third 
line and line(3,7)=0 otherwise. 

3.2. Algorithm Description  

The main steps of the algorithm are presented by Fig. 3. 
When no new TIRs can be deduced within the cycle “for 
each digit”, special tests are accomplished.  

A first special test focuses on the identification and 
exploiting of restrictions involved by the condition known 
as “Pointing pairs, pointing triples “ (Fig. 4 , Sudokuwiki, 
2011) .  

 
 
Fig. 4. Example of grid where two conditions of type 
“Pointing pairs, pointing triples” are accomplished 

The rule from this context is “If a pair or triple of digits 
“x” can reside only on a certain line/column from a certain 
zone z, it forbits the presence of “x” in the places from the 
same line/column in the grid outside z”. This type of 
restrictions is implemented as follows: 

reads the initial clues; 
operates TIRs according to the line, column and zone related 
restrictions imposed by the initial clues ; 
while (unsolved cells)  
    for each unsolved cell (i,j) 

          if �
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=
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1k
kjic  then 

           find  k for which c(i,j,k)=1; 
            c(i,j,10)=  k ; 
            /*(exclusivity of the tested digit in cell(i,j)
            cell (i,j) is solved)*/ 
            c(i,j,1...9)=0; 
            break; 

          end if; 
     end for; 
      for each digit in {1,2..,9} 
       operates newly derived line related TIRs; 
        operates newly derived column related TIRs; 
         operates newly derived zone related TIRs; 
       for each cell ( i,  j)  

             if �
�

�
�
�

� =�
=

1)_:,,(
9

1i
digittestedic  then 

                  find j for which c(i,j,tested_digit)=1;  
                  c(i,j,10)=tested_digit;/*(exclusivity of the tested 
                  digit on line i was detected, cell (i,j) is solved)*/ 
      c(i,j,1...9)=0; 
                   break; 
              end if; 

             if �
�

�
�
�

� =�
=

1)_,(:,
9

1i
digittestedjc  then 

                   find i for which c(i,j,tested_digit)=0;   
c(i,j,10)=tested_digit;/*(exclusivity of the tested 
digit on column j was detected, cell (i,j) is solved)*/ 

                    c(i,j,1...9)=0; 
                     break; 
             end if; 

              if 
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∈
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11

jizonej
jizonei

digittestedjic  then 

                  find the pair (i1,j1) for which c(i1,j1,tested_digit)=0
                            within zone(i,j); 
                    c(i1,j1,10)=tested_digit; /*(exclusivity of the 
                     tested digit on zone including the cell (i1,j1)  
                    was  detected, cell (i1,j1) is solved)*/ 
                   c(i1,j1,1...9)=0; 
            end if; 
     end for; 
     end for; 
    /*accomplish special tests if no new solution found*/ 
end while; 
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The “line-to-box” and respectively “column-to-box” 
restrictions are depicted by Fig. 5 (Sudokuwiki, 2011). In 
this example, the digit “2” can appear on the first line 
only within the zone 2, and therefore the cells from zone 2 
not belonging to the first line cannot host 2. 

 
 

Fig. 5. Example for “line-to-box” restriction. 

The restrictions of type “line (or column) to box” are 
implemented as follows: 

 
Other restrictions that prooved to be useful are the so 
called “hiden/naked pairs, hiden/naked triples”. An 
example for their application is presented in Fig. 6 
(Sudokuwiki, 2011). In this example, the pair (1,6), 
appearing for the first zone only on the first line 
(providing that neither 1 nor 6 appear in any other place 

 
Fig. 6. Example for “naked pairs” restriction. 

from this zone), restricts all the remaining cells from this 
line such as they can not host none of the digits from the 
pair.  

The implementation of this restriction for lines is: 

 
Similar restrictions are imposed by hiden/naked pairs 
along columns (in this case restrictions of type 
c(*,j,digit1) and c(*,j,digit2) are imposed).  

The presence of hiden/naked pairs within a certain zone zk 
is detected with conditions cond1 which can be written as 
follows: 
   ( ) ( ) 22,,1,,

,,
==== ��

∈∈ kzzkzz zji
zz

zji
zz digitjicdigitjic    (1) 

The second condition here requires that all jz-s for which 
c(iz,jz,digit1)=1 match all jz-s for which c(iz,jz,digit2)=1. 
In this case the restrictions which can be imposed are:  
c(iz,jz,digit1)=0 and c(iz,jz,digit2)=0 for all {iz,jz} 
belonging to zk.  

A special combination of coordinates of places and their 
content is known in gammers’ world as “x-wing”, an 
example being given in Fig. 7 (Sudokuwiki, 2011).  

A x-wing is delimited by places forming a rectangle, each 
of them hosting a certain digit x (in this example x=2). On 
two of the diagram’s “units“ of the same type (columns or 
lines) which overlap a pair of similar units forming the 
rectangle’s sides, x appears only twice (in this example 2 

for each digit1 in {1,2,...9} 
   for each digit2 in {1,2,...9} 
      for each line i  

  cond1= ��
�

�
��
�

�
====��

==
2)2:,,()1:,,(

9:19:1 jj
digiticdigitic ;

       cond2 is true if all j-s for which c(i,j,digit1)=1 match  
            all j-s for which c(i,j,digit2)=1; 
             if (cond1 and cond2) then */the combination   
               (digit1,digit2) forms a hiden/naked pair along line i  
                and imposes restrictions over line i except the speci-
               fic combinations (i,jnaked) where pairs appear:*/ 
              c(i,:,digit1)=0;c(i,:,digit2)=0; 
            restore the old values of cells involved in pair; 
          end if;     end for; end for; end for; 

for each digit in {1,2,...9} 
  for each zone z(m) 
      for each line i from z(m) 

if ( )
( )
� �
∈

=
mzj

digittestedicdigittestedjic _:,,)_,,( then

          /*impose restrictions over zone:*/ 
         c(i1,j,tested_digit)=0 for (all ( )mzj ∈  and ( ) iimzi ≠∈ 11 , )
        end if; end for; 
      for each column j from z(m) 

if ( )
( )
� �

∈

=
mzi

digittestedjcdigittestedjic _,:,)_,,(   then 

      /*impose restrictions over zone: */ 
       c(i,j1,tested_digit)=0 for (all ( )mzi ∈  and ( ) jjmzj ≠∈ 11 , )
       end if;  end for;  
   end for; end for; 

for each zone z(m) 

if 
( )

�
∈

==
izoneji

ordigittestedjic
1,1

11 )3(2)_,,(  then 

      find the set of  i1 and j1  for which c(i1,j1,tested_digit)=1; 
             if i1-s are identic then 
               /* impose restrictions over line i1*/ 
    c(i1,*,tested_digit)=0 excepting the columns  
                  belonging to z(m) 
           else 
              if j1-s are identic then 
               /* impose restrictions over column j1*/ 
                 c(*,j1,tested_digit)=0 excepting the lines  
                 belonging to z(m) 
            end if;  end if; end if; end for; 
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Fig. 7. Example for x-wing forming and restrictions. 

appears only twice along the columns 5 and 8 respectively, 
which overlap the x-wing’s vertical sides) and  both 
apparitions are in x-wing corners. The restrictions imposed 
by x-wing follow the rule (Sudokuwiki, 2011) “when there 
are only two candidates for a value, in each of 2 different 
units of the same kind, and these candidates lie also on 2 
other units of the same kind, then all other candidates for 
that value can be eliminated from the latter two units”. In 
this example, 2-s are forbitten in the shadded places, which 
follow the upper and lower sides of the x-wing. 

The implementation of x-wing conducted by lines is as 
follows: 

 
Finally, the last special test implemented by our algorithm 
is related to the so-called “y-wings”, an example being 
given in Fig. 8 (Sudokuwiki , 2011).  
The principle behind the forming of this special structure 
is as follows: a certain place p (the “pivot”) can host 
exactly 2 digits (p1 and p2).  The other two places y1 and 
y2, also hosting only a pair of digits, can “see” p and do 
not  “see” each other. In this context “seeing” means to 
share a certain unit (line, column or zone). y1 contains 
exactly the digits (p1, r) and y2 contains exactly the digits 
(p2, r).  

 
 
Fig. 8. Example for y-wing forming and restrictions. 

Then r is restricted to appear in any place pr which can 
see both places y1 and y2.  

In the given example, the place identified by the 
coordinates (9,2) is the pivot, the places with coordinates 
(1,2) and respectively (7,1) are the y-wing’s branches and 
the restricted digit is 6, restrictions appearing in the places 
with coordinates (2,1) and (2,3).  

The implementation of y-wing was made as follows: 
 

identify all places p(l) which can host exactly 2 digits  
   for all possible triples of places (p(l1), p(l2) and p(l3)) 
       identify their coordinates from the current position 
       following the rule:  i(l)=(int) (l/9); j(l)=l-(i-1)*9;         

         if  the triple (p(l1), p(l2) , p(l3)) forms a y-wing with  
                          p(l1) as pivot then 
           determine the restricted digit r and all p(lr) playing  
           the role of pr ;             

            for each p(lr) 
determine i(lr)=(int) (lr/9); j(lr)=lr-(i-1)*9; 

               if p(lr) sees both p(l2) and p(l3)  
                 //impose restrictions according to y-wing 
                   c(ir,jr,r)=0; 
                end if; 
           end for; 
       end if; 
   end for; 
 

4. TESTS 

4.1. Solving Easy Classic Diagrams 

Our first tests were done considering the grids from Figs. 
9-11, rated as easy because their solving does not require 
strategies for the imposing of indirect restrictions. The 
clues are represented with bold fonts. 

A natural approach is to evaluate firstly the number of 
occurances for every distinct digit in the set of input data 
(clues). Considering the grid from Fig. 9, this means: 5 
occurances of digit 1, 3 occurances of digit 2 and so on.    

If  the analysis within the while cycle from Fig. 3 is made  

for each digit in {1,2,...9} 
      for each pair of lines (i1,i2) , i1=1...8, i2=i1+1...9   

��
�

�
��
�

�
===== � � 2)_:,,2()_:,,1(1 digittestedicdigittestedicc

        if c1 then 
         find the pairs  (j1_i1,j2_i1) and  (j1_i2,j2_i2)  
            corresponding to lines i1 and i2 where the flags for 
             tested_digit were 1; 
          if maching pairs of js (corners formed) then 
            /*x-wing with corners (i1,j1), (i1,j2), (i2,j1), (i2,j2) 
              impose restrictions over columns */ 
              c(:,j1,tested_digit)=0 ; c(:,j2,tested_digit)=0 ; 
            //recover corners  
            c(i1,j1,tested_digit)=1; c(i1,j2,tested_digit)=1 etc.
        end if; end if; 
       end for; end for;  
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2 1 7 4 8 3 6 5 9 
5 3 8 6 1 9 2 4 7 
9 4 6 7 5 2 3 8 1 
4 2 9 8 7 1 5 6 3 
1 6 5 2 3 4 9 7 8 
8 7 3 9 6 5 1 2 4 

7 9 2 1 4 6 8 3 5 
3 8 1 5 2 7 4 9 6 
6 5 4 3 9 8 7 1 2 

Fig. 9. First example of easy grid  (22 clues). 

7 4 6 8 1 9 5 3 2 
3 5 2 6 7 4 8 1 9 
9 8 1 2 5 3 6 4 7 
5 9 4 1 3 2 7 6 8 
6 7 3 5 9 8 1 2 4 
1 2 8 7 4 6 9 5 3 
2 1 9 4 6 7 3 8 5 
4 6 7 3 8 5 2 9 1 
8 3 5 9 2 1 4 7 6 

Fig. 10. Second example of easy grid (18 clues). 

3 6 4 2 1 8 7 9 5 
7 5 1 4 6 9 8 3 2 
2 9 8 5 3 7 4 6 1 
9 4 2 6 8 1 3 5 7 
6 8 3 7 5 4 1 2 9 
1 7 5 9 2 3 6 4 8 
5 1 9 3 7 6 2 8 4 
4 3 7 8 9 2 5 1 6 
8 2 6 1 4 5 9 7 3 

Fig. 11. The third example of easy grid (17 clues). 
such as to consider firstly as “tested digit” the digits found 
as having the greatest number of occurancies, the 
conditions of exclusivity which result into cells’ 
solutioning will be derived faster and easier, therefore 
providing an additional guarantee for the algorithm’s 
possibility to find incrementaly new solutions up to the 
solutioning of the entire grid.  
For the grid depicted by Fig. 9, separate tests were 
performed considering that the cycle “for each digit...” 
will consider the following sequence of tested digits : 1, 6, 
2, 3, 8, 7,9,4,5. 

The algorithm was tested for many easy classic grids with 
at least 17 clues (for which a single solution exists) and 
no failures were recorded. 

The runtimes required to solve the grids from Figs. 8...10, 
whose number of clues varies from 17 to 24 are gathered 
in Table 1. In order to diminish as much as possible the  

Table 1. Runtimes for standard classic easy grids 
Diagram 

identification 
Type of test 

sequence Mean runtime [s] 

Fig. 9. Default 0.070 
Calculated 0.073 

Fig. 10.  Default 0.116
Calculated 0.109

Fig. 11. Default 0.100
Calculated 0.108

 

influence of the programming environment’s multi-tasking 
features over the real performances of the algorithm, the 
runtimes were evaluated as mean values over 10 distinct 
runnings. The analysis of data from Table 1 proves the 
algorithm’s efficiency: very small runtimes (around 0.1 s) 
were required to solve grids with the minumum number of 
clues required by grids with a single solution.  Obviously 
smaller runtimes were recorded when the 1st grid was 
solved, as more clues were provided. No rule can be 
derived relative to the relation between the runtimes 
corresponding to the cases relying on the default test 
sequence (1,2,3...,9) and respectively to the cases using test 
sequences imposed by the distribution of clues’ values 
(refered from this point forward as “calculated test 
sequences”).  However small differences are recorded 
between both cathegories of runtimes. The explanation 
consists in the unpredictable relation between two runtimes 
T1 and T2: T1 represents the runtime saved during the 
execution of the algorithm’s main cycle due to easier and 
faster derivings of TIRs whilst T2 represents the runtime 
wasted with the imposed test sequence evaluation. The 
unpredictibility is generated by the random selection of 
both characteristics of clues: values and positions 
respectively.  

4.2. Solving Classic Diagrams of Medium Difficulty 

Many tests were made on classic grids with a medium 
degree of dificulty, where strategies as those implemented 
by our algorithm must be used to deduce indirect 
restrictions over the content of (sets of) places.  For a 
significant percent of tests, the special strategies were 
sufficient to find the solution without the use of the 
backtracking branches from our algorithm. A first 
example for this kind of diagrams is depicted by Fig. 12.  

For this case, the efficiency of branches dealing with x-
wing scenarios implemented by our algorithm is depicted 

4 5 9 7 1 6 3 8 2 
6 1 2 3 8 9 7 4 5 
8 7 3 2 4 5 1 6 9 
3 8 7 9 6 4 5 2 1 
5 2 4 1 7 3 6 9 8 
1 9 6 8 5 2 4 3 7 
9 6 5 4 2 1 8 7 3 
7 3 1 6 9 8 2 5 4 
2 4 8 5 3 7 9 1 6 

Fig. 12. First example of grid with medium difficulty. 
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Fig. 13. Example from execution: indirect elimination 
through x-wing.  

 
Fig. 14. Example from execution : indirect elimination 
through y-wing. 
by Fig. 13, where a x-wing determined by the digit 7 
along the lines 2 and 6  and bordered by the columns 7 
and 9 imposes the restriction “7 cannot appear in the place 
with coordinates (4,7)” .   

The efficiency of branches dealing with y-wings scenarios 
is depicted by Fig. 14, where the pivot is surounded by an 
ellipse, the y-wing branches are marked by rectangles and 
the cell marked by a rhomb is restricted – it is not allowed 
to contain the digit 2. 

Still for certain grids (as that depicted by Fig. 15 – 
classified as “tough”), the use of the backtracking branch 
is compulsory. 

We considered usefull to provide in detail the evolution of 
execution (Table 2). To denote the restrictions, we used the 
following codes:  lc = derived from single possible 
occurance along line or column; us=unique solution (single 
possibility in place after restrictions’ applying); z= unique 
solution in zone; B – solution selected by backtracking.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3 6 9 2 1 8 4 7 5 
2 1 5 7 4 9 8 6 3 
4 8 7 6 3 5 9 1 2 
7 5 4 8 6 1 2 3 9 
6 3 1 9 2 4 7 5 8 
9 2 8 3 5 7 6 4 1 
1 7 3 4 8 2 5 9 6 
5 4 2 1 9 6 3 8 7 
8 9 6 5 7 3 1 2   4 

Fig. 15. Second example of grid with medium difficulty. 
Beginning  with the 16-th step (marked with *), the use of 
special strategies was compulsory, and beginning with the 
26-th step (marked with **), the backtracking branch was 
activated, as the scenario from Fig. 16 was achieved. 
 

3     16 9 26 18 258 4 7 25 
2 146 5 7 14 9 8 16 3 
14 8 7 246 3 25 9 16 25 
7 5 4 8 6 1 2 3 9 
6 13 13 9 2 4 7 5 8 
9 2 8 3 5 7 6 4 1 
14 1347 13 24 478 28 5 9 6 
5 49* 2 1 49 6 3 8 8 
8 79 6 5 79 3 1 2 4 

 

Fig. 16.  Partial solution for the grid from Fig. 15, when 
backtracking becomes operational. 
 

The presence of a special rectangular construction 
(marked with bolded fonts in Fig. 16) makes the 
algorithm to choose between two alternatives for the place 
positioned at the coordinates (8, 2): 4 and respectively 9. 
Only the first option generates a valid solution.  

An analysis of the runtimes required for the solutioning of 
both analysed medium difficulty grids revealed a mean 
runtime of 0.0936 s corresponding to the grid from Fig. 
14 and respectively of 0.376 s for the grid from Fig. 15, 
revealing the additional effort in the case when the 
backtracking branch was used. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2. Places solutions along with the restrictions which yielded them for grid from Fig. 15. 
Detection 

order 
Index 
line 

Index 
column 

Solution Restriction 
code 

Detection 
order 

Index 
line 

Index 
column

Solution Restriction 
code 

Detection 
order 

Index 
line 

Index 
column 

Solution Restriction 
code 

1 4 3 4 lc 18 9 8 2 us 35 7 2 7 us 
2 4 4  8 us 19 8 8 8 us 36 9 2 9 us 
3 5 7 7 us 20 9 4 5 us 37 5 2 3 us 
4 6 1 9 us 21 9 6 3 us 38 7 5 8 us 
5 4 6 1 us 22 8 3 2 lc 39 1 5 1 us 
6 5 8 5 us 23 2 3 5 lc 40 7 6 2 us 
7 6 4 3 us 24 8 1 5 lc 41 1 2 6 us 
8 4 9 9 us 25 2 9 3 us 42 3 6 5 us 
9 5 5 2 us 26** 3 5 3 lc 43 7 4 4 us 

10 6 6 7 us 27 8 2 4 B 44 1 4 2 us 
11 6 7 6 us 28 2 5 4 lc 45 2 2 1 us 
12 7 9 6 lc 29 7 1 1 us 46 3 9 2 us 
13 1 8 7 lc 30 8 5 9 us 47 1 6 8 us 
14 3 7 9 lc 31 3 1 4 us 48 2 8 6 us 
15 8 7 3 z 32 7 3 3 us 49 3 4 6 us 

16* 2 7 8 lc 33 9 5 7 us 50 1 9 5 us 
17 9 1 8 us 34 5 3 1 us 51 3 8 1 us 
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As both runtimes were very small (under 0.4 s), one can 
conclude that even for medium difficulty grids the 
algorithm is very efficient from the execution point of 
view. The moderate additional memory required by the 
auxiliary data structures used to improve the runtime 
efficiency and to implement the special strategies that help 
avoiding the backtracking up to a point when it should be 
used to select between a significantly reduced set of options 
(or should not be used at all), let us conclude that this 
algorithm represents a reliable option for runtime 
applications where the time is critical and the grids to be 
solved are known as having a medium degree of difficulty. 

 
CONCLUSIONS 

The logic, implementation, testing and evaluation of an 
efficient Sudoku solver, successfully tested for classic 
grids of small and medium difficulty, were presented.  

An efficient 3-d array containing information on grid’s 
content and on possible candidates for its unsolved cells 
at every computation step is used. Auxiliary matrices 
containing flags related to restrictions associated with 
lines, columns and zones are used, along with execution 
branches that implement special strategies for indirect 
applying of restrictions (known as „x-wing”, „y-wing”, 
„hiden/naked pairs”, „box-to-line restrictions” etc.). These 
techniques result into the reducing (usually up to zero) of 
the necessity to use the segment of backtracking code. 
This is revealed by the obtaining of very good runtimes 
(not exceeding 0.4 s for classic grids of medium difficulty 
and respectively 0.15 s for easy puzzles) as compared to 
usually runtimes of seconds reported by literature.  

The solver can be easily adapted to solve grids with 
additional restrictions (e.g. restrictions corresponding to 
diagonals, symmetric grids etc.). 

The moderate additional memory required by the auxiliary 
data structures used to improve the runtime efficiency and 
to implement the special indirect restrictioning-related 
strategies let us conclude that this algorithm represents a 
reliable option for runtime applications where the time is 
critical and the grids to be solved are known as having a 
medium degree of difficulty. 
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