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Abstract: Most studies that involve xPCTarget as a real time operating system in charge of 
executing a control task are focusing on the built in control and simulation capabilities. In this 
paper we are trying to see how accurate and how fit xPC Target is for multiple Targets control.
We will try to see how the percentage of lost packages is influenced by the number of Target PCs 
connected to the master and also by parameter tuning (a desynchronization between master and 
Targets). Also we will use real experimental data to see what’s the limit for the communication 
and response time to be reliable. Here the xPC Target is used as an operating environment for real 
time processing and to create a computer network system used for remote control.
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1. INTRODUCTION

National Instruments and The MathWorks, Inc. make PC 
real-time simulation possible with the use of real-time 
kernels. The use of real-time simulators is increasingly 
becoming more popular as hardware-in-the-loop 
prototyping has proven as a reliable design tool, a 
decrease in time to market products, and as a safe low-
cost experimental alternative to potentially damaging 
equipment.  

In this work, the real time kernel xPC Target is used to 
determine the feasibility, accuracy, and determinism of 
bootloaders as an alternative to costly real-time simulators 
for smaller systems. Implications and modeling 
methodologies of simulating the power system in real-
time using xPC are presented providing a discussion at 
the end of this paper on how communication between 
master PC and Targets is affected by different parameters 
(like sampling rate, generated signal frequency and 
others).

To define the communication network performance  the 
use of several targets is necessary (Figure 1). 

Figure 1. System Implementation 

This strategy achieves network implementation based on 
message passing, which uses Real-Time Workshop, xPC 
Target and Simulink toolboxes from MATLAB by 
MathWorks Inc. Only one kind of local area network
technology is used: Ethernet. 

To study the number of sent packages we created a small 
application that monitors the packages sent through 
TCP\IP Protocol. 

Basically the application starts a session and uses 4 
variables: sourcePort, sourceIP and destPort, destIP to 
monitor communication. It displays only the IPs for the 
target and the sender (Figure 2). 

In order to make sure that our application works correctly 
and the results are accurate we will compare our output 
against the output acquired by using Microsoft Network 
Monitor v3.4 (Figure 3).

This is a more complex application that captures 
absolutely all packages (not only TCP but also DHCP, 
ARP, HTTP, DNS, etc.) but allows us to filter data after 
almost any criteria: address, protocol used, etc.

  
Figure 2. Sniffer application  
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Figure 3. Microsoft Network Monitor

Three computers (one host and two targets) and a 
compatible data acquisition card are required to provide 
the interface between the software and the hardware to be 
controlled (a nonlinear, open loop unstable and time 
varying device). Measured signals can be displayed in 
real time or saved for further analysis. 

Several strategies for managing time delay within control 
laws have been studied by different research groups. For 
instance Nilsson proposes the use of a time delay scheme 
integrated to a reconfigurable control strategy based upon 
a stochastic methodology. On the other hand, in (Wu,
1997) a reconfiguration strategy based upon a 
performance measure from a parameter estimation fault 
diagnosis procedure is proposed. Another strategy has 
been proposed by Jiang et al. (1999) where time delays 
are used as uncertainties, which modify pole placement of 
a robust control law. 

In (Izadi-Zamanabadi and Blanke, 1999) it is presented an 
interesting view of fault tolerant control approach related 
to time delay coupling. Reconfigurable control has been 
studied from the point of view of structural modification 
since fault appearance as presented by Blanke et al. 
(2007), where a logical relation between dynamic 
variables and faults are established. Alternatively 
reconfigurable control may perform a combined 
modification of system structure as is studied in (Benítez-
Pérez and García-Nocetti, 2005) and (Thompson, 2004).

Another technique like gain scheduling (Khalil, 2002) 
may give an interesting approximation to several time 
delay scenarios, however complexity related to system 
modelling during fault conditions is out the scope of this 
paper. 

Some considerations need to be stated in order to define 
this approach. Time delays are bounded and restrictive to
scheduling algorithms. Global stability can be reached by 
using classical control strategy for online time delays.  
The control algorithm was designed and implemented by 
the Matlab/Simulink software  (Release 14) with Real-
Time Workshop and xPC Target Toolbox. These tools are 
able to automatically generate stand-alone real-time 
applications from the Simulink models that run on the so-

called Target PC, while their development is carried out 
on a separate host computer. 

The paper is organized as follows. In Section 2 xPC
Target application and how we are going to use it is 
presented. The experiment’s setup in a step by step 
manner is described in Section 3. Section 4 presents how 
we have to run our experiment in order to get correct 
experimental data. Finally, Section 5 concludes the paper. 

2. xPC TARGET

xPC Target is a host-target solution for prototyping, 
testing, and deploying real-time systems using standard 
PC hardware. It is an environment that uses a target PC, 
separate from the host PC, for running real-time 
applications.

In this environment we use the desktop computer as a host 
PC with MATLAB®, Simulink®, and Stateflow® 
(optional) to create models using Simulink blocks and 
Stateflow diagrams. After creating our model, we can run 
simulations in real-time.

xPC Target allows us to add I/O blocks to our model, and 
then use the host PC with Real-Time Workshop®, 
Stateflow Coder (optional) and a C compiler to create 
executable code. The executable code is downloaded from 
the host PC to the target PC running the xPC Target real-
time kernel. After downloading the executable code, we
can run and test your target application in real-time.

To accomplish our goals we will use the oscillator model, 
called xpcosc.mdl to demonstrate signal tracing with 
target scopes. Target scopes are used to trace or display 
signals on a video monitor attached to the target PC. 

After building and downloading the model to the target 
PC, four scopes of type 'target' are added to the 
application; each scope having a different acquisition 
mode. 

The four scopes are identified by the following scope 
numbers: 1, 3, 6, and 7. The signals 'Signal Generator' 
(oscillator input) and 'Integrator1' (oscillator output) are 
added to and displayed on each scope. The duration of the 
simulation can be fix or it can be set to run permanently.

The idea is that the master PC and target PC exchange 
data permanently and we can track the number of 
sent/received packages.

3. EXPERIMENT SETUP

As we said before we need one computer to be used as 
master. We don’t need anything special just a Intel 
Ethernet card (we use INTEL PRO 100 S), a FAT 32 
formatted hard disk and Matlab with xPC target module 
installed. One more thing we need is that these 3 PCs 
(master and 2 slaves) to be connected through a Ethernet 
network. Using the master PC we will create a startup 
disk for the first target PC: we need to type ‘xpcexplr’ in 
Matlab main screen and in the new window choose 
Communication (under the first target PC) with options 
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TCP\IP for communication type and all needed 
information to identify the target PC (Figure 4).

Figure 4. xPC Setup

On the tab Configuration we select BootFloppy as a 
Target boot mode, we insert a floppy disk and we write 
the xPC Target operating system kernel. Using the new 
created disk we boot the first target PC. The procedure is 
repeated for the second Target PC using the 
corresponding IP address.

After the setup is complete we run xpcexplr and we 
connect to each Target PC. 

The next step is running xpcosc command to load the 
model (Figure 5) and then after setting Simulation option 
to External we run Incremental Build. We need to create a 
m file where we set the four scopes and then Run the m
file. By running the command xpctargetspy we can 
actually see the output on the Target Pcs (Figure 6).

After the communication was established and the Host PC 
transmits data to the Target PCs every millisecond we can
start our tracking applications. We already established 
that we are going to use Microsoft Network Monitor v 3.4 
and an application developed with the specific purpose of 
displaying the packages sent and received by our Host 
PC.
                         

Figure 5. xpcosc.mdl

Figure 6. xpctargetspy command output. 

4. RUNNING THE EXPERIMENT

After everything is set up and we start sending/receiving 
packages we can easily track them. As it can be seen in 
Figure 7 the average number of total packages sent and 
received in one second is about 257 packages when using 
only one target PC. 

When a second PC is inserted into the network the 
number of packages sent (for real) drops to an average of 
about 203 packages per second. This is also because 
collisions appear. We must be aware that UDP protocol 
does not guarantee the order of packages transmission or 
that they reach the destination, and also doesn’t verify 
network load. 

In our experiment we have to keep in mind the fact that 
the packages counted at return have travelled through the 
network 2 times and that the delay is bigger than the case 
in which we would measure only the time they spend 
travelling from one computer to another. 

It is also highlighted here, from the point of view of the 
approached subject, that the response time of a system in
a network under which data collecting, the command and 
processing of the system are made in different places and 
not in the same place in which the actuators are held.

Figure 7. Microsoft Network Monitor v3.4 output for one 
xPC target
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In different cases, after modifying the value for sampling 
rate in the program used for testing we get the next 
values:

1) For a sampling rate of 10ms and same value for the 
update/change time of the input (generated signal) for 
both programs running we get a percent of lost 
packages of ~14% (Figure 8).  

Figure 8. Output for a sampling rate of 10ms   

As the figure shows, in the upper section is 
represented the generated signal and the signal 
received back from the network, and in the lower 
section we have the values of the counters.
In this case the ratio between sent and received 
packages is almost 7 to 6. The number of displayed 
samples here is 1000.

2) For a sampling rate of 100ms and same value for the 
update/change time of the input (generated signal) for 
both programs running we get a percent of lost 
packages of ~0% (Figure 9). 

Figure 9. Output for a sampling rate of 100ms

Due to the fact that no losses were recorded, on the 
second target scope the lines are not overlapping. The 
number of displayed samples here is 300.

3) For a sampling rate of 1ms and same value for the 
update/change time of the input (generated signal) for 
both programs running we get a percent of lost 
packages of ~66% (Figure 10). 
  

 

Figure 10. Output for a sampling rate of 1ms

It seems that the number of sent packages is almost 3 
times larger than the number of received packages. 
The number of displayed samples here is 1000.

4) If we change the sampling rate and we choose 
different values for the sending and receiving 
components of our system, more precisely a greater 
time for the sampling rate of the sender and a smaller 
time for the receiving component 10ms sent, 1ms 
receive; we get a small percent of losses: ~5%
(Figure 11). 

Figure 11. Output for a sampling rate of 10ms sent,
1ms receive  

In this case the ratio between sent and received
packages is almost 19 to 18. The number of displayed 
samples here is 1500.

5) For 10ms sent and 9ms receive the recorded loss rate 
is ~0,6% much smaller then 10ms for both. (Figure 
12). 

In this case the ratio between sent and received 
packages is almost 164 to 163. The number of 
displayed samples here is 1500.
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Figure 12. Output for a sampling rate of 10ms sent, 9ms 
receive  

5. CONCLUSIONS

An obvious conclusion would be related to the direct 
connection between sampling rate values and the 
percentage of lost packages: when the sampling rate value 
increases the percentage of lost packages decreases. 

This is somehow normal because there are more packages 
being sent when the sampling rate has a small value and 
there is a greater network load thus the chances of
package loss and delay increases. 

An interesting result is the great difference in the value of 
package loss percentage between setting both sender and 
destination at a rate of 10ms and a sampling rate of 10ms 
at the sender side, greater than 9ms set for the destination 
side (it will receive more often). A conclusion that can be 
drawn from here it is that it helps a lot to have the 
destination end receive more often than the sender side 
can transmit.

The most dramatic case, in which the rate of lost packages 
is about 66% is when the value of sampling rate is very 
low (1ms). This can be explained by a high package 
arrival rate and low processing speed.  

Future work shall be focused on repeating the experiment
using a greater number of PCs and see which is the 
maximum number supported. We will change the network 
topology and see how it does affect package transfer 

itself. In the end a comparison between xPC Target and 
other real-time software environments will be made in 
order to see which can handle more Targets in the most 
accurate way.  
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