
xPC Target communication efficiency when multiple targets are involved

����������	�
��*
�

*University of Craiova, Department of Automatic Control, 200585-Craiova
Romania (Tel: +40-251-438198; e-mail: madalin@automation.ucv.ro)

Abstract: Most studies that involve xPCTarget as a real time operating system in charge of
executing a control task are focusing on the built in control and simulation capabilities. In this
paper we are trying to see how accurate and how fit xPC Target is for multiple Targets control.
We will try to see how the percentage of lost packages is influenced by the number of Target PCs
connected to the master and also by parameter tuning (a desynchronization between master and
Targets). Also we will use real experimental data to see what’s the limit for the communication
and response time to be reliable. Here the xPC Target is used as an operating environment for real
time processing and to create a computer network system used for remote control.

Keywords: xPC Target, Matlab, Package Loss, Target Control, Capture packages, Error rates

�

1. INTRODUCTION

National Instruments and The MathWorks, Inc. make PC
real-time simulation possible with the use of real-time
kernels. The use of real-time simulators is increasingly
becoming more popular as hardware-in-the-loop
prototyping has proven as a reliable design tool, a
decrease in time to market products, and as a safe low-
cost experimental alternative to potentially damaging
equipment.

In this work, the real time kernel xPC Target is used to
determine the feasibility, accuracy, and determinism of
bootloaders as an alternative to costly real-time simulators
for smaller systems. Implications and modeling
methodologies of simulating the power system in real-
time using xPC are presented providing a discussion at
the end of this paper on how communication between
master PC and Targets is affected by different parameters
(like sampling rate, generated signal frequency and
others).

To define the communication network performance the
use of several targets is necessary (Figure 1).

Figure 1. System Implementation

This strategy achieves network implementation based on
message passing, which uses Real-Time Workshop, xPC
Target and Simulink toolboxes from MATLAB by
MathWorks Inc. Only one kind of local area network
technology is used: Ethernet.

To study the number of sent packages we created a small
application that monitors the packages sent through
TCP\IP Protocol.

Basically the application starts a session and uses 4
variables: sourcePort, sourceIP and destPort, destIP to
monitor communication. It displays only the IPs for the
target and the sender (Figure 2).

In order to make sure that our application works correctly
and the results are accurate we will compare our output
against the output acquired by using Microsoft Network
Monitor v3.4 (Figure 3).

This is a more complex application that captures
absolutely all packages (not only TCP but also DHCP,
ARP, HTTP, DNS, etc.) but allows us to filter data after
almost any criteria: address, protocol used, etc.

Figure 2. Sniffer application

13

Figure 3. Microsoft Network Monitor

Three computers (one host and two targets) and a
compatible data acquisition card are required to provide
the interface between the software and the hardware to be
controlled (a nonlinear, open loop unstable and time
varying device). Measured signals can be displayed in
real time or saved for further analysis.

Several strategies for managing time delay within control
laws have been studied by different research groups. For
instance Nilsson proposes the use of a time delay scheme
integrated to a reconfigurable control strategy based upon
a stochastic methodology. On the other hand, in (Wu,
1997) a reconfiguration strategy based upon a
performance measure from a parameter estimation fault
diagnosis procedure is proposed. Another strategy has
been proposed by Jiang et al. (1999) where time delays
are used as uncertainties, which modify pole placement of
a robust control law.

In (Izadi-Zamanabadi and Blanke, 1999) it is presented an
interesting view of fault tolerant control approach related
to time delay coupling. Reconfigurable control has been
studied from the point of view of structural modification
since fault appearance as presented by Blanke et al.
(2007), where a logical relation between dynamic
variables and faults are established. Alternatively
reconfigurable control may perform a combined
modification of system structure as is studied in (Benítez-
Pérez and García-Nocetti, 2005) and (Thompson, 2004).

Another technique like gain scheduling (Khalil, 2002)
may give an interesting approximation to several time
delay scenarios, however complexity related to system
modelling during fault conditions is out the scope of this
paper.

Some considerations need to be stated in order to define
this approach. Time delays are bounded and restrictive to
scheduling algorithms. Global stability can be reached by
using classical control strategy for online time delays.
The control algorithm was designed and implemented by
the Matlab/Simulink software (Release 14) with Real-
Time Workshop and xPC Target Toolbox. These tools are
able to automatically generate stand-alone real-time
applications from the Simulink models that run on the so-

called Target PC, while their development is carried out
on a separate host computer.

The paper is organized as follows. In Section 2 xPC
Target application and how we are going to use it is
presented. The experiment’s setup in a step by step
manner is described in Section 3. Section 4 presents how
we have to run our experiment in order to get correct
experimental data. Finally, Section 5 concludes the paper.

2. xPC TARGET

xPC Target is a host-target solution for prototyping,
testing, and deploying real-time systems using standard
PC hardware. It is an environment that uses a target PC,
separate from the host PC, for running real-time
applications.

In this environment we use the desktop computer as a host
PC with MATLAB®, Simulink®, and Stateflow®
(optional) to create models using Simulink blocks and
Stateflow diagrams. After creating our model, we can run
simulations in real-time.

xPC Target allows us to add I/O blocks to our model, and
then use the host PC with Real-Time Workshop®,
Stateflow Coder (optional) and a C compiler to create
executable code. The executable code is downloaded from
the host PC to the target PC running the xPC Target real-
time kernel. After downloading the executable code, we
can run and test your target application in real-time.

To accomplish our goals we will use the oscillator model,
called xpcosc.mdl to demonstrate signal tracing with
target scopes. Target scopes are used to trace or display
signals on a video monitor attached to the target PC.

After building and downloading the model to the target
PC, four scopes of type 'target' are added to the
application; each scope having a different acquisition
mode.

The four scopes are identified by the following scope
numbers: 1, 3, 6, and 7. The signals 'Signal Generator'
(oscillator input) and 'Integrator1' (oscillator output) are
added to and displayed on each scope. The duration of the
simulation can be fix or it can be set to run permanently.

The idea is that the master PC and target PC exchange
data permanently and we can track the number of
sent/received packages.

3. EXPERIMENT SETUP

As we said before we need one computer to be used as
master. We don’t need anything special just a Intel
Ethernet card (we use INTEL PRO 100 S), a FAT 32
formatted hard disk and Matlab with xPC target module
installed. One more thing we need is that these 3 PCs
(master and 2 slaves) to be connected through a Ethernet
network. Using the master PC we will create a startup
disk for the first target PC: we need to type ‘xpcexplr’ in
Matlab main screen and in the new window choose
Communication (under the first target PC) with options

14

TCP\IP for communication type and all needed
information to identify the target PC (Figure 4).

Figure 4. xPC Setup

On the tab Configuration we select BootFloppy as a
Target boot mode, we insert a floppy disk and we write
the xPC Target operating system kernel. Using the new
created disk we boot the first target PC. The procedure is
repeated for the second Target PC using the
corresponding IP address.

After the setup is complete we run xpcexplr and we
connect to each Target PC.

The next step is running xpcosc command to load the
model (Figure 5) and then after setting Simulation option
to External we run Incremental Build. We need to create a
m file where we set the four scopes and then Run the m
file. By running the command xpctargetspy we can
actually see the output on the Target Pcs (Figure 6).

After the communication was established and the Host PC
transmits data to the Target PCs every millisecond we can
start our tracking applications. We already established
that we are going to use Microsoft Network Monitor v 3.4
and an application developed with the specific purpose of
displaying the packages sent and received by our Host
PC.

Figure 5. xpcosc.mdl

Figure 6. xpctargetspy command output.

4. RUNNING THE EXPERIMENT

After everything is set up and we start sending/receiving
packages we can easily track them. As it can be seen in
Figure 7 the average number of total packages sent and
received in one second is about 257 packages when using
only one target PC.

When a second PC is inserted into the network the
number of packages sent (for real) drops to an average of
about 203 packages per second. This is also because
collisions appear. We must be aware that UDP protocol
does not guarantee the order of packages transmission or
that they reach the destination, and also doesn’t verify
network load.

In our experiment we have to keep in mind the fact that
the packages counted at return have travelled through the
network 2 times and that the delay is bigger than the case
in which we would measure only the time they spend
travelling from one computer to another.

It is also highlighted here, from the point of view of the
approached subject, that the response time of a system in
a network under which data collecting, the command and
processing of the system are made in different places and
not in the same place in which the actuators are held.

Figure 7. Microsoft Network Monitor v3.4 output for one
xPC target

15

In different cases, after modifying the value for sampling
rate in the program used for testing we get the next
values:

1) For a sampling rate of 10ms and same value for the
update/change time of the input (generated signal) for
both programs running we get a percent of lost
packages of ~14% (Figure 8).

Figure 8. Output for a sampling rate of 10ms

As the figure shows, in the upper section is
represented the generated signal and the signal
received back from the network, and in the lower
section we have the values of the counters.
In this case the ratio between sent and received
packages is almost 7 to 6. The number of displayed
samples here is 1000.

2) For a sampling rate of 100ms and same value for the
update/change time of the input (generated signal) for
both programs running we get a percent of lost
packages of ~0% (Figure 9).

Figure 9. Output for a sampling rate of 100ms

Due to the fact that no losses were recorded, on the
second target scope the lines are not overlapping. The
number of displayed samples here is 300.

3) For a sampling rate of 1ms and same value for the
update/change time of the input (generated signal) for
both programs running we get a percent of lost
packages of ~66% (Figure 10).

Figure 10. Output for a sampling rate of 1ms

It seems that the number of sent packages is almost 3
times larger than the number of received packages.
The number of displayed samples here is 1000.

4) If we change the sampling rate and we choose
different values for the sending and receiving
components of our system, more precisely a greater
time for the sampling rate of the sender and a smaller
time for the receiving component 10ms sent, 1ms
receive; we get a small percent of losses: ~5%
(Figure 11).

Figure 11. Output for a sampling rate of 10ms sent,
1ms receive

In this case the ratio between sent and received
packages is almost 19 to 18. The number of displayed
samples here is 1500.

5) For 10ms sent and 9ms receive the recorded loss rate
is ~0,6% much smaller then 10ms for both. (Figure
12).

In this case the ratio between sent and received
packages is almost 164 to 163. The number of
displayed samples here is 1500.

16

Figure 12. Output for a sampling rate of 10ms sent, 9ms
receive

5. CONCLUSIONS

An obvious conclusion would be related to the direct
connection between sampling rate values and the
percentage of lost packages: when the sampling rate value
increases the percentage of lost packages decreases.

This is somehow normal because there are more packages
being sent when the sampling rate has a small value and
there is a greater network load thus the chances of
package loss and delay increases.

An interesting result is the great difference in the value of
package loss percentage between setting both sender and
destination at a rate of 10ms and a sampling rate of 10ms
at the sender side, greater than 9ms set for the destination
side (it will receive more often). A conclusion that can be
drawn from here it is that it helps a lot to have the
destination end receive more often than the sender side
can transmit.

The most dramatic case, in which the rate of lost packages
is about 66% is when the value of sampling rate is very
low (1ms). This can be explained by a high package
arrival rate and low processing speed.

Future work shall be focused on repeating the experiment
using a greater number of PCs and see which is the
maximum number supported. We will change the network
topology and see how it does affect package transfer

itself. In the end a comparison between xPC Target and
other real-time software environments will be made in
order to see which can handle more Targets in the most
accurate way.

ACKNOWLEDGMENT

This work was supported by the strategic grant
POSDRU/89/1.5/S/61968, Project ID61968 (2009), co-
financed by the European Social Fund within the Sectorial
Operational Program Human Resources Development
2007-2013.

REFERENCES

Benítez-Pérez, H. and García-Nocetti, F. (2005).
Reconfigurable Distributed Control. Springer Verlag.

Blanke, M., Kinnaert M., Lunze J., and Staroswiecki M.
(2003). Diagnosis and Fault Tolerant Control.
Springer Verlag.

Izadi-Zamanabadi, R. and Blanke M. (1999). A Ship
Propulsion System as a Benchmark for Fault-Tolerant
Control. Control Engineering Practice, vol. 7, pp.
227-239.

Jiang, J. and Zhao, Q. (1999). Reconfigurable Control
Based on Imprecise Fault Identification. Proceedings
of the 1999 American Control Conference, San Diego,
June, 1999, vol. 1, pp. 114-118.

Khalil, H. (2002). Nonlinear Systems. Third Edition.
Prentice Hall.

Nilsson, J. (1998). Real-Time Control with Delays. PhD.
Thesis, Department of Automatic Control, Lund
Institute of Technology, Sweden.

Thompson, H. (2004). Wireless and Internet
Communications Technologies for monitoring and
Control. Control Engineering Practice, vol. 12, pp.
781-791.

Wu, N.E. (1997). Reliability of Reconfigurable Control
Systems: A Fuzzy Set Theoretic Perspective.
Proceedings of the 36th Conference on Decision &
Control, San-Diego, USA, 1997, vol. 4, pp. 3352-
3356.

17

