

Database testing – an overview

Augustin-Iulian Ionescu*
�

*Department of Computers and Information Technology
(e-mail:ionescu.augustin@cs.ucv.ro)

University of Craiova, Decebal Blv. No. 107
�

Abstract: The differences between data and information imply different approach of data quality
and information quality. Sometimes apparently correct data can generate wrong information
because the information represents an interpretation of the data in a given context and the
interpretation is a very subjective process. Using the PSP/IQ model, this paper emphasizes the
most important metrics for data information testing and attempts to answer what database testing
means. Database quality analysis raises some specific issues that require special approaches. A
very well designed database can be useless if the data timeliness is not permanently supervised but
also, correct data can be useless if the database structure does not allow their correct association.
This paper aims to answer the question: what does “testing a database” means.
Keywords: database, information, metrics, PSP/IQ model, quality, testing

�
1. INTRODUCTION

The low quality of data/information has a major negative
impact over the hall activity into an organization. Because
the data set at the fundament of the data valued chain, we
can conclude that every error that affect the data life cycle
can affect the derivate information and thus the decision
based on this information [Ionescu, 2009]. In
consequence all organizations are concerned to assure a
high quality of their databases. All related activities must
eliminate the dirty data not only useless but even
dangerous for the quality of decisions taken at executive
level.

2. PSP/IQ MODEL

There are four possibilities to approach the quality
concept :

� the quality is excellence;
� the quality is value;
� the quality is fitness for requirements;
� the quality is fitness for user’s expectations.

The model PSP/IQ (Product and Service Quality for
Information Quality) was presented in (Beverly, 2002).
This model (Table 1) can easily be put in touch with a set
of metrics based on the fitness for specification as on the
fitness for user’s expectations.

The metrics proposed by the authors of this model have
the following meanings:
� accessibility - the extent to which a data/information

is available to as many people as possible or can be
quick retrieved;

� accuracy - the extent to which the information is
correct and safe for use;

� actuality (timeliness) – the extent to witch the
information reflects reality at a moment clause
enough to the moment of the information use;

� added value - the extent to which the information
produce benefits by it using or distributing;

� appropriate amount of information – the extent to
witch the available amount of information is
sufficient to resolve the user’s problems.

� credibility – extent that the information can be
considered true or at least credible;

� completeness - the extent to which the information is
sufficient to solve current tasks;

� concise representation - the extent to which
information is represented in a compact, no
redundant form;

� consistent representation - the extent to which
representation is unambiguous and contains no
logical inconsistency;

Table 1. PSP/IQ model

 Satisfaction of
specifications

Meet and exceed of
consumer
expectations

Product
Quality

Sound Information
The characteristics of
the information
supplied meet IQ
standards.

Useful
Information
The information
supplied meets
information
consumer task
needs.

Service
Quality

Dependable
Information
The process of
converting data into
information meets
standards.

Usable
Information
The process of
converting data into
information
exceeds
information
consumer needs.

7

� intelligibility - the extent to which information can
be understood by different categories of users;

� interoperability - the extent to which information
from different sources is represented in the same
format, in appropriate language, with appropriate
symbols and units of measurement;

� objectivity - the extent to which information is
generated by some unbiased and repeatable processes
and measurements are made with authorized
procedures;

� relevance - the extent to which the information is
useful for solving specified tasks;

� reputation - the extent to which information is
generated by an authorized and esteemed source;

� safety - the extent to which access to information is
restricted so that it can not be intentionally destroyed
or used for deceptive purposes;

� usability - extent that the information is easy to
manipulate in various applications.

The relationship between the PSP/IQ model and the
information metrics presented above are summarized in
Table 2.

Table 2. The relationship between PSP/IQ model and the
information metrics (Beverly, 2002)

 Satisfaction of
specifications

Meet and exceed of
consumer
expectations

Product
Quality

Sound
Information
- concise repre-
sentation;
- completeness;
- consistent
 representation.

Useful Information
- appropriate amount of

information;
- relevance;
- inteligibility
- interoperability;
- objectivity.

Service
Quality

Dependable
Information
- actuality;
- security;

Usable Information
- added value;
- credibility;
- accessability;
- reputation;
- reputation.

3. DATABASE QUALITY ISSUES

As shown in (Ionescu, 2008), in the study of data quality /
information some specific issues related to accuracy and
dynamics can be emphasized.

Especially when working with data about people, data
accuracy is very difficult to prove. For example the
confusion between "valid date" and "true date" is
frequently observed.

Those who collect and enter data into the computer
basically have very few ways to check if a document is
official or falsified. Such research involves specialists,
special equipment and high costs.

Even if those who declare certain data are in good faith,
they may occur as false. For example, in certain social
settings or in certain geographic area, date of birth is
known only approximately, in relation to certain special
events or family tradition.

The dynamic nature of the data makes accurate data at
some moment to become false sometimes later. For
example, address, phone number, email address are
submitted to relatively frequent changes over time and in
general people do not immediately notice these changes
or not declare them at all.

Some changes, such as the change of name by marriage,
require the implementation of some means of tracking all
the time-related changes. For example, it is possible for
the same person to publish articles under various names,
which adds complexity to the verification of statements
from CV.

As transforming data into information is a matter of
interpretation, sometimes accurate data does not represent
accurate information. This happens frequently in
Medicine where the same symptoms can lead to different
diagnoses depending on the experience of the person who
makes the interpretation.

4. WHAT SHOULD BE TESTED IN A RELATIONAL
DATABASE

There are still people who confuse the database testing
with the testing of the applications developed over this
database. In reality the testing of a database represents a
very complex and laborious process which include:
� Verification of accuracy of requirements (static testing,
inspection);
� Verification of correctness of the capture of specific
data integrity rules (static testing);
� Verification of correctness of the conceptual model
(static test);
� Verification of correctness of the logical models (static
test);
� Checking the correctness of transformation of the
conceptual model in relational model (static test). This
also involves the final structure optimization by
normalizing data and eliminating duplicates, synonyms
and homonyms (static testing);
� Verification of correctness of scripts intended to create
the database and tables (static and dynamic testing);
� Verification of correct implementation of declarative
integrity rules (dynamic testing);
� Checking the possibility of using national alphabets
with diacritics (dynamic testing);
� Verification of correctness of relationships between
tables (dynamic testing).
� Verification of correctness of the views (static and
dynamic testing).
� Verification of implementation of stored procedures
(static and dynamic testing).

8

� Verification of implementation of user functions (static
and dynamic testing).
� Verification of correct implementation of triggers
(dynamic testing).
� Observation! Currently stored procedures, user defined
functions and triggers are fundamental elements of the
database, with tables and views;
� Verification of correct implementation of secure access
to database content (static and dynamic testing);
� Depending on load, performance measurement to
assess the quality indexes created (dynamic testing);
� Realization of stress tests for large volumes of data and
/ or a large number of users to concurrently access
(dynamic testing);
� Checking of the users rights grant;
� Cheking of the data timeliness.

Each type of the above tests involves several processes
and must be done by a certain category of professionals.

Creating conceptual model is an iterative and laborious
process, based on the requirements of the user. Obtained
structure can be permanent modified based on discussions
between designer and user.

Such conceptual model quality testing is performed by
specialists in conceptual design model while relational
model quality is checked by specialists SQL or database
administrators.

One of the key roles of any information system is to
enforce the business rules set by the owning organization.
Time is the most significant barrier to effectively testing
the implementation of a set of business rules (David,
2005). We can distinguish two component of time spend
for the business rules testing:
� the time required to run sufficient tests to verify each
of the rules;
� the time needed for testers to design test cases that not
only exercise the functionalty of the system but also
verify that a set of business rules have not been violated.

The information systems will need to enforce a lot of
different business rules. The implementations of this rules
is spread across the system. The type of implementation
will also vary between rules:
� implementation in a declarative manner;
� implementation as a trigger;
� implementation in a rule repository;
� implementation in the application’s source code.

Additionaly, business rules evolve freqquently, in line
with changing business focus, organization oportunities
and statuary regulations. Sometimes for diffent periods
must be implemented different rules; this situation change
a declarative rule in a more complicated time depending
rule wich need a trigger or a rule repository for
implementation.

To test a business rule one or more SQL queries must be
generated. The automation of SQL queries generation is

not a simple process.

It seems that software tools that can automatically
generate all the necesary test cases for such situations do
not exist yet.

Because many business rules are concerned with the
organization, it is often difficult to formulate simple unit
tests for them. Instead, integration testing must be
performed, in wich several programs are executed in
sequence to create the circumstances that might lead to a
rule violation.

A special case is the testing of stored procedures, user
functions or triggers because they can be implemented in
various non-procedural programming languages, and
can be tested at both the code (white-box testing) and
functional level (black -box testing).

For example we consider a table tblPersoane created with
the SQL statement:

CREATE TABLE tblPersoane(
 Marca char(10) NOT NULL,
 Categorie char(2) DEFAULT 'CD',
 CNP char(13) DEFAULT NULL,
 NumePersoana varchar(50) NOT NULL,
 InitialaPersoana varchar(10) NOT
NULL DEFAULT '-',
 PrenumePersoana varchar(50) NOT
NULL,
 Sex char(1) DEFAULT 'M',
 DataNastere date,
 Cetatenie varchar(10) NOT NULL
DEFAULT 'română',
 Email varchar(40) DEFAULT NULL,
 Observatii varchar(40),
 CONSTRAINT tblpersoane_pkey PRIMARY
KEY (Marca),
 CONSTRAINT tblpersoane_sex_check
CHECK (sex IN ('M ', 'F '))
);

We also consider a trigger that checks the correctness of
email addresses and normalizes the representation. The
program, developed in pl/pgsql is presented in Fig. 1.

/* trigger for e-mail correctness
verification */

CREATE OR REPLACE FUNCTION
trVerificare_Email()
 RETURNS trigger AS
$BODY$
DECLARE
i integer;
k1 integer; k2 integer; k3 integer;
BEGIN
-- email must be represented only in
lower cases
NEW.Email = lower(btrim(NEW.Email));
-- verification of name correctness
 k1=0;k2=0;k3=0;
FOR i IN 1..length(NEW.Email) LOOP

9

 IF NOT ((substr(NEW.Email,i,1)
BETWEEN 'a' AND 'z') OR
 (substr(NEW.Email,i,1) BETWEEN
'0' AND '9') OR
 (substr(NEW.Email,i,1)='@') OR
 (substr(NEW.Email,i,1)='-') OR
 (substr(NEW.Email,i,1)='-') OR
 (substr(NEW.Email,i,1)='.'))
THEN
 RAISE EXCEPTION ' Email address
contains forbitten characters';
 END IF;

 IF (substr(NEW.Email,i,1)='@') then
k1=k1+1; END IF;
 IF (substr(NEW.Email,i,1)='.') then
k2=k2+1; END IF;

END LOOP;

 IF (k1!=1 OR k2!=1) THEN
 RAISE EXCEPTION 'Wrong format at
e-mail address;
 END IF;

RETURN NEW;
END
$BODY$
LANGUAGE plpgsql;

Fig. 1. Trigger that checks the correctness of email
addresses and normalizes the representation

Testing such a program can not be done directly but only
by executing a set of instructions for insert or update.

Firstly a trigger based on the function from Fig. 1 was
created, as follows:

DROP TRIGGER IF EXISTS
trVerificare_Email ON tblPersoane ;
CREATE TRIGGER trVerificare_Email
BEFORE INSERT OR UPDATE ON tblPersoane
FOR EACH ROW EXECUTE PROCEDURE
trVerificare_Email();

The first test will be an apparently simple one, especially
if in the database’s domain of use there are email
addresses with length greater than that provided by the
design of tblPersoane table.

INSERT INTO tblPersoane (Marca,
NumePersoana, InitialaPersoana,
PrenumePersoana, Email)
VALUES ('1234','Ionescu', 'F.',
'Augustin-Iulian',
'iulian1000@gmail.com');

Although this seemed to be a good test, the message
received after execution is:

********** Error **********

ERROR: wrong code for SEX!!
SQL state: P0001

This message appears unrelated to the performed test,
because it was not considered that before installing the
analyzed trigger, over the same table another trigger was
activated for testing CNP field and updating fields Sex
and DataNastere. It follows that it is necessary to use
another test to ensure correct not-null value for CNP, as
follows:

INSERT INTO tblPersoane (Marca,CNP,
NumePersoana,
InitialaPersoana,PrenumePersoana,
Email)
VALUES ('1234','1520726163218',
'Ionescu', 'F.', 'Augustin-Iulian',
'augustin.iulian1000@gmail.com');

The message received after execution is:

ERROR: value too long for type character varying(20)

Note that, and this time the trigger proper testing was not
possible. For not waiting the change of field Email
description, the tester can use an appropriate correct email
surrogate address like in following instruction:

INSERT INTO tblPersoane (Marca,CNP,
NumePersoana
,InitialaPersoana,PrenumePersoana,
Email)
VALUES ('1234', '1520726163218',
'Ionescu', 'F.', 'Augustin-Iulian',
'iai100@gmail.com');

The executed of insertion instructions
allow the trigger testing, as follows:

DELETE FROM tblPersoane;
INSERT INTO tblPersoane (Marca, CNP,
NumePersoana, InitialaPersoana,
PrenumePersoana, Email)
INSERT INTO tblPersoane (Marca, CNP,
NumePersoana ,InitialaPersoana,
PrenumePersoana, Email)
VALUES ('1234', '1520726163218',
'Ionescu', 'F.', 'Augustin-Iulian', '
iai100@gmail.com');
DELETE FROM tblPersoane;
INSERT INTO tblPersoane (Marca, CNP,
NumePersoana , InitialaPersoana,
PrenumePersoana, Email)
VALUES ('1234', '1520726163218',
'Ionescu', 'F.', 'Augustin-Iulian',
'iai100@gmail.com.');
DELETE FROM tblPersoane;
INSERT INTO tblPersoane (Marca, CNP,
NumePersoana ,InitialaPersoana,
PrenumePersoana, Email)
VALUES ('1234', '1520726163218',
'Ionescu', 'F.', 'Augustin-Iulian',
'ia.i100@gmail.com');
DELETE FROM tblPersoane;

10

INSERT INTO tblPersoane (Marca, CNP,
NumePersoana , InitialaPersoana,
PrenumePersoana, Email)
VALUES('1234', '1520726163218',
'Ionescu', 'F.', 'Augustin-Iulian',
'iai100@@gmail.com');

Although the first two INSERT statement generate the
same error messages, their meaning is different. The first
message corresponds to a real case of wrong format (the
last character is a point). The second message does not
match a wrong format (the point can exist in the left or the
right part of the email address) so put out an error in the
operation of the program under test.
The last INSERT instruction do not generate any error
message and this must be considered as an error in the
program under test (the format of address is obviously
wrong).

Many other test cases can be generated but one must see
that even the very few cases analyzed previously can
reveal the complexity of a trigger testing. This complexity
derives from the fact that a trigger is oftently a program
that performs various tests on the basis of sophisticated
algorithms.

Verification of a query is a more difficult process than it
seems at a first glance because it may involve
decomposing the query into a set of relational algebra
operators. Each of these operators must be tested
independently. A special case is the testing of the impact
of the number of instances from each table involved in the
query on the time necesary to obtaine the result. In large
databases such tests involve generating a large number of
test data. On one hand these data have to be as close as
possbile to real data and on the other hand they have to be
anonymous, that is not to provide useful information to
someone who has casually access to them. For example,
the generation of the test CNP can be performed by
enough sophisticated software, or more simply by taking
some real CNP and assigning them to fictitious persons.
For a few test cases, the trigger for the CNP validation
can be used for the generation of test CNP. The trigger
can have the following structure:

CREATE OR REPLACE FUNCTION
trCNP_verif()
 RETURNS trigger AS
$BODY$
DECLARE
numar char(12);
suma bigint;
C smallint;
BEGIN
-- check for number of digits in CNP
IF length(NEW.CNP)<13 THEN
 RAISE EXCEPTION 'wrong CNP
length!!';
END IF;
suma = 0;

-- CNP checksum calculation
numar='279146358279';
FOR k IN 1..12 LOOP
 suma= suma +CAST(substr(NEW.CNP,k,1)
AS integer)*CAST(substr(numar,k,1) AS
integer);
END LOOP;
 C = CAST(suma AS integer) % 11;
 IF C=10 THEN
C=1;
 END IF;
IF C <> CAST(substr(NEW.CNP,13,1) AS
integer) THEN
 RAISE EXCEPTION 'wrong CNP code!!';
END IF;
-- substract the sex from CNP
 IF (substr(NEW.CNP,1,1)='1') OR
 substr(NEW.CNP,1,1)='5') THEN
 NEW.Sex='M';
ELSIF (substr(NEW.CNP,1,1)='2') OR
 (substr(NEW.CNP,1,1)='6') THEN
 NEW.Sex='F';
ELSE
RAISE EXCEPTION 'wrong code for
sex!!';
END IF;
RETURN NEW;
END;
$BODY$
LANGUAGE plpgsql;

CREATE TRIGGER trCNP_verif BEFORE
INSERT OR UPDATE ON tblPersoane

FOR EACH ROW EXECUTE PROCEDURE
trCNP_verif();

Check a view is essentially checking the queries that
underlie its creation. This involves the need to check the
join conditions (if there are multiple tables) as well as the
vertical and horizontal selection conditions and fairness
aliases. A view test is often an integration test, involving
the junction and/or union of more tables. Like any test
integration, a multi-table view testing will not be
conducted until all tests have been completed considered
for each table.

Cheeking the data timeliness is possible only during the
database maintenance and requires a rigorous plan checks
usually performed by specialists of the organization that
uses the database. Despite all efforts, ensuring accuracy of
the data at any time is virtually impossible.

Great attention should be paid to the language-specific
characters as their use depends on both the specifications
in the database and setting of some parameters in the
operating system.

11

In order to achieve certain performance and stress tests, it
is necessary to create data libraries by automatically
generating the dataset or by data adaptation of some old
database.

5. CONCLUSIONS

Database testing is a very complex and time-consuming
procedure which needs to be conducted on database’s
entire life cycle. The database testing is sometimes more
difficult than the test of programs developed over it.

Special efforts should be done for the development of
principles to guide databases testing and the
implementation of the software tools for automatically
generated test cases at least for the most common
situations involving tests such as checking specific
integrity rules implemented in a declarative manner or by
triggers.

Testing database did not involve the creation of methods
and techniques for testing out the classic scenarios (black-
box, white-box and gray-box) (Shivani, 2012)). What is
needed is to understand how to use these methods in the
context of complex data structures.

REFERENCES

Beverly K. Kahn, Diane M. Strong (1998). Product and
Service Performance Model for Information Quality:
An Update, Information Quality Conference

Beverly K. Kahn, Diane M. Strong, Richard Y. Wang
(2002). Information quality benchmarks: product and
service performance, Communications of the ACM,
Vol 45, No. 4ve

David Willmor, Suzanne M. Embury (2006). Teting the
implementation of business rules using intentional
database testing,

www.cs.man.ac.uk/~willmord/files/willmorembury-
TAICPART06.pdf

Ionescu Augustin-Iulian, Dumitrascu Eugen (2008).
Continuous Data Quality Assurance, Anale
Universitatea din Craiova

Ionescu Augustin-Iulian, Dumitrascu Eugen, Enescu
Nicolae-Iulian(2009). Method of Testing the Quality
of a Database During Exploitation, MTC Greece

Shivani Acharya, Vidhi Pandya (2012). Bridge between
Black Box and White Box – Gray Box Testing
Technique, International Journal of Electronics and
Computer Science Engineering, Vol 2-Nr. 1

12

