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Abstract: In this paper one presents an algorithm for a DC motor parameters identification from 
sample data using the distribution approach. While most of the latest methods used in 
identification utilize a discrete-time model, the distribution method is an alternative approach to 
directly identify a continuous-time model from discrete-time data. The relation between the state 
variables is represented by functionals using techniques from distribution theory. Based on these 
relations, an algorithm for off-line parameter identification is developed. The method is applied to 
identify the parameters of a real experimental platform.  
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1. INTRODUCTION 

Since the advance of digital computers and the 
availability of digital data furnished by the acquisition 
boards, most system identification algorithms usually aim 
at identifying the parameters of discrete-time models 
based on sampled input-output data. Over the last period 
there has been an increasing interest in continuous-time 
approaches for system identification from sampled data 
Johansson, 1994), (Sinh, 1991). Identification of 
continuous-time models is indeed a problem of 
considerable importance in various disciplines. 

A simplistic way of estimating the parameters of 
continuous-time models by an indirect approach is to use 
the sampled data to first estimate a discrete-time model 
and then convert it into an equivalent continuous-time 
model (Unbehauen, 1990). The second step, i.e. obtaining 
an equivalent continuous-time model from the estimated 
discrete-time model, is not always easy. Difficulties are 
encountered whenever the sampling time is either too 
large or too small (Middleton, 1990). Whereas a large 
sampling interval may lead to loss of information, a small 
sampling period may create numerical problems because 
the poles are constrained to lie in a small area of the z-
plane close to the unit circle. Some conversion methods 
use the matrix logarithm which may produce complex 
arithmetic when the matrix has negative eigenvalues. 
Moreover, the zeros of the discrete-time model are not as 
easily transformable to continuous-time equivalents as the 
poles are. In every tuning algorithm, the most difficult 
phase is the identification one, the whole control design 
depending on it. We can underline two approaches of 
identification algorithms: on-line identification algorithms 
and off-line identification algorithms. In on-line 
identification approach, the result is obtained in the same 
moment with a new observation data acquisition. The on-
line identification deals with parametric methods 

(deterministic or stochastic), which identify the 
parameters of a mathematical model with a structure 
apriori known. The main on-line methods can be found in 
(Soderstrom and Stoica, 1989) or (Eykhoff, 1974). 

In off-line identification approach it is possible to identify 
both the structure of linear time invariant systems and the 
parameters of the mathematical model using observations 
over a larger time interval, including the steady state 
(Bastogne et. al., 1996). The distribution method used in 
this paper is an off-line integral method. In this approach 
the set of linear differential equations describing the state 
evolution is mapped into a set of linear algebraic 
equations respect to the model parameters.  

DC motors have long been widely used in many industrial 
applications. A dc motor can be considered as a single 
input, single output (SISO) system having torque-speed 
characteristics compatible with most mechanical loads. 
This makes a DC motor controllable over a wide range of 
speeds by proper adjustments of its terminal voltage. 
Mathematical modelling is one of the most important and 
often the most difficult step towards understanding a 
physical system. In modelling a dc motor, the aim is to 
find the governing differential equations that relate the 
applied voltage with the produced speed of the rotor and 
to determine the parameters of the model. System 
identification of dc motors is a topic of great practical 
importance, because for almost every servo control design 
a mathematical model is needed. This paper is structured 
as follows. Section 2, describes the dynamic of the 
separately excited dc motor. Section 3 presents the 
problem statement of continuous time systems 
identification based on distribution approach. Section 4 is 
dedicated to identification algorithm analysis. In section 
5, the identification algorithms are applied to the 
parameter identification of a dc motor. Finally, 
conclusions of the paper are summarized in section 6. 



 
 

     

 

2. DC MOTOR MODEL 

A mathematical model for a physical device must often 
reflect a compromise. It must not attempt to mirror the 
real device in such great detail that the model becomes 
cumbersome; on the other hand it should not be so 
simplified that predictions and explanations based on it 
are either trivial or far from reality. 

In this work one used the second order linear model over 
other models due to its simplicity. The main difficulty 
with the nonlinear models is the requirement of numerical 
solution and the use of this model in those applications of 
adaptive and optimal control which require a digital 
computer. The second-order linear model assumes the 
following: 

1. The static friction is negligible and the frictional torque 
can be considered directly proportional to angular 
velocity. 
2. The brush voltage drop is negligible. 
3. Armature reaction can be neglected. 
4. The resistance and the inductance of the armature can 
be regarded as constant. 

There is a variation of the inductance of the armature with 
armature current, so conventional methods for dc motor 
parameters identification is not accurate and lead to poor 
controlling (Sinha, 1984). 

A DC motor is designed to run on DC electric power. By 
far the most common DC motor types are the brushed and 
brushless types, which use internal and external 
commutation respectively to create an oscillating AC 
current from the DC source so they are not purely DC 
machines in a strict sense. The classic DC motor design 
generates an oscillating current in a wound rotor, or 
armature, with a split ring commutator, and either a 
wound or permanent magnet stator. A rotor consists of 
one or more coils of wire wound around a core on a shaft; 
an electrical power source is connected to the rotor coil 
through the commutator and its brushes, causing current 
to flow in it, producing electromagnetism. The 
commutator causes the current in the coils to be switched 
as the rotor turns, keeping the magnetic poles of the rotor 
from ever fully aligning with the magnetic poles of the 
stator field, so that the rotor never stops but rather keeps 
rotating indefinitely (as long as power is applied and is 
sufficient for the motor to overcome the shaft torque load 
and internal losses due to friction, etc.). 

 

Fig. 1. DC motor equivalent circuit.  

A DC motor can be considered as a single input, single 
output (SISO) system having torque-speed characteristics 
compatible with most mechanical loads. A DC motor 
consists of two sub-processes: electrical and mechanical. 
The electrical sub-process consists of armature 
inductance, armature resistance and the magnetic flux of 
the stator. A second sub-process in the motor is a 
mechanical one. The traditional model of DC motor is a 
2-order linear one, which ignores the dead nonlinear zone 
of the motor. The DC motor equivalent circuit under 
rating excitation is shown in Fig. 1. 

The motor torque, T, is related to the armature current, ia, 
by a constant factor Kt. The back emf, E, is related to the 
rotational velocity by the constant factor Ke.  

The voltage balance equation of DC motor armature 
circuit is expressed as  

 
dt
diLKiRu aea +⋅+⋅= ω     (1) 

where, i is armature current (A); La is equivalent 
inductance of armature circuit (H); Ra is equivalent 
resistance of armature circuit ( Ω ); u is terminal voltage 
of armature circuit (V); Ke is voltage coefficient of DC 
motor (V·s/rad). The torque balance equation of DC 
motor is expressed as  

 
dt
dJBiKt

ωω =⋅−⋅                         (2) 

where, J is the inertia moment of the rotor (Kg·m2); Kt is 
the torque coefficient of DC motor (N·m/A); B is viscous 
friction coefficient (N·m·s/rad). In the state-space form, 
the equations above can be expressed by choosing the 
rotational speed and electric current as the state variables 
and the voltage as an input. The output is chosen to be the 
rotational speed, so by representing (1) and (2) in a model 
of state space form provides:  
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Eliminating state variable i from this system of equation 
one obtains the input – output differential equation: 
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3. DISTRIBUTION BASED IDENTIFICATION OF 
LINEAR SYSTEMS 

Accurate mathematical models and their parameters are 
essential when designing controllers because they allow 
the designer to predict the closed loop behaviour of the 
plant (Wang, 1999). Errors in parameter values can lead 
to poor control and instability.  

The conventional way of characterizing a dc motor is to 
perform a separate test for each parameter, but this is not 
only time consuming, but can yield misleading results if 
the parameters are measured under static or no load 
conditions (Jung,1992). Therefore, estimation techniques 
must be used to estimate the unknown or inaccurate 
parameters values with precision. Each identification 
session consists of a series of basic steps. Some of them 
may be hidden or selected without the user being aware of 
his choice. This can result in poor or suboptimal results. 
In each session the following actions should be taken: 

• Collecting information about the system. 
• Selecting a model structure to represent the system. 
• Choosing the model parameters to fit the model as well 
as possible to the measurements: selection of a ”goodness 
of fit” criterion. 
• Validating the selected model.  

Estimation approaches can be divided into two categories: 
offline estimation and online estimation. Offline 
techniques use specific test inputs, measure the 
corresponding output signals and then try to establish the 
relation between them. Online techniques use, for 
example, observers and Kalman filters to recursively 
estimate parameters. Distribution based technique is an 
off-line estimation method. 

A choice should be made within all the possible 
mathematical models that can be used to represent the 
system. Again a wide variety of possibilities exist, such 
as: 

- Parametric versus nonparametric models: In a 
parametric model, the system is described using a limited 
number of characteristic quantities called the parameters 
of the model, whereas in a nonparametric model the 
system is characterized by measurements of a system 
function at a large number of points (Bos,2007). 
Examples of parametric models are the transfer function 
of a filter described by its poles and zeros and the motion 
equations of a piston. An example of a nonparametric 
model is the description of a filter by its impulse response 
at a large number of points. Usually it is simpler to create 
a nonparametric model than a parametric one because the 
modeller needs less knowledge about the system itself in 
the former case. However, physical insight and 
concentration of information are more substantial for 
parametric models than for nonparametric ones. 

- White box models versus black box models: In the 
construction of a model, physical laws whose availability 

and applicability depend on the insight and skills of the 
experimenter can be used (Kirchhoff’s laws, Newton’s 
laws, etc.). Specialized knowledge related to different 
scientific fields may be brought into this phase of the 
identification process. The modelling of a loudspeaker, 
for example, requires extensive understanding of 
mechanical, electrical, and acoustical phenomena (Diniz, 
2002). The result may be a physical model, based on 
comprehensive knowledge of the internal functioning of 
the system. Such a model is called a white box model. 
Another approach is to extract a black box model from the 
data. Instead of making a detailed study and developing a 
model based upon physical insight and knowledge, a 
mathematical model is proposed that allows sufficient 
description of any observed input and output 
measurements. This reduces the modelling effort 
significantly. The choice between the different methods 
depends on the aim of the study: the white box approach 
is better for gaining insight into the working principles of 
a system, but a black box model may be sufficient if the 
model will be used only for prediction of the output. 

- Linear models versus nonlinear models: In real life, 
almost every system is nonlinear. Because the theory of 
nonlinear systems is very involved, these are mostly 
approximated by linear models, assuming that in the 
operation region the behaviour can be linearized Pearson, 
2000). This kind of approximation makes it possible to 
use simple models without jeopardizing properties that 
are of importance to the modeller. This choice depends 
strongly on the intended use of the model. For example, a 
nonlinear model is needed to describe the distortion of an 
amplifier, but a linear model will be sufficient to represent 
its transfer characteristics if the linear behaviour is 
dominant and is the only interest. 

One important direction in continuous-time system 
identification is to transform the system of differential 
equations to an algebraic system that reveals the unknown 
parameters (Marin, 2002). By using some measures, the 
direct computation of the input-output data derivatives 
can be completely avoided. For linear system 
identification, several methods are reported on this 
direction: identification based on the Laplace 
transformation and then use the Laguerre filter or 
transforming the continuous-time system to the frequency 
domain. The idea of utilizing test functions in system 
identification was proposed by Pearson and Lee (Pearson, 
1985) in terms of modulating functions in order to 
ameliorate the noise handling for deterministic least-
squares identification based on time limited data. In this 
approach the set of linear differential equations describing 
the state evolution is mapped into a set of linear algebraic 
equations respect to the model parameters. Using 
techniques utilized in distribution approach, the 
measurable functions and their derivatives are represented 
by functionals on the fundamental space of testing 
functions (Schwartz, 1951). The main advantages of this 
method are that a set of algebraic equations with real 



 
 

     

 

coefficients results and the formulations are free from 
boundary conditions (Ohsumi, 2002).  

Let us denote by nΩ  the fundamental space from the 
distribution theory of the real functions 

)(,: tt ϕϕ →ℜ→ℜ  with compact support T, having 
continuous derivatives at least up to the order n. Let 

)(,: tqtq →ℜ→ℜ  be a function which admits a 
Riemann integral on any compact interval T from ℜ . 
Using this function, a unique distribution (or generalized 
function)  

 ℜ∈→ℜ→Ω )(,: ϕϕ qnq FF  (6) 

can be built by the relation: 

 ∫
ℜ

Ω∈∀= nq dtttqF ϕϕϕ ,)()()(     (7) 

In distribution theory, the notion of k-order derivative is 
introduced. If nqF Ω∈ , then its k-order derivative is a 

new distribution n
k

qF Ω∈)(  uniquely defined by the 
relations:  
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is the k-order time derivative of the test function.  

When )(ℜ∈ kCq , then 

∫∫
ℜℜ
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that means the k-order derivative of a distribution 
generated by a function )(ℜ∈ kCq  equals to the 
distribution generated by the k-order time derivative of 
the function q. So, in place of the states and their time 
derivatives of a system one utilize the corresponding 
distributions and, in some particular cases, it is possible to 
obtain a system of equations linear in parameters. If the 
system is compatible the model parameters are 
structurally identifiable.  

In our study have been utilized three types of test 
functions characterized by a bounded support 

baba ttttT <= ),( , all of these accomplishing the 
condition: 

  ),[],(;0)( +∞∪−∞∈∀= ba ttttϕ  (12)  

The nonzero restriction is one of the following three 
types: 

1. Exponential: 
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2. Sinusoidal: 

 ))/()((sin)( abb
p ttttt −−= πϕ  (14) 

3. Polynomial: 

 p
b

p
a ttttt )()()( −−=ϕ  (15) 

where 2≥p  is an integer.  

Figures 1 and 2 present the exponential type test function 
and its first-order derivative for T = [0.1 0.9]. One can 
note that these functions and their derivatives vanish on 
the   
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Fig. 2. Exponential type test function 
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Fig. 3. First-order derivative of exponential type test 
function 



 
 

     

 

For a linear system consider the input – output differential 
equation  
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Multiplying both sides with a test function )(tϕ  and 
integrating over ℜ  one get the following algebraic 
equation: 
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The unknown parameters are grouped in a column vector: 
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Because θ  has p components it is necessary to use a 
finite number pN ≥ of test functions Nii :1, =ϕ  to get a 
linear system of algebraic equations in the unknown 
parameters: 

 Fwθ=Fv (21) 

where Fw is a real matrix )( pN ×  
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If the matrix rank is r=rank(Fw)=p then the system has a 
unique solution: 
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Remark 1. The consistency of estimates is influenced by 
the sampling period. The consistency analysis of 
estimates using integral filters is presented in section 4. 

Remark 2. This procedure can also be applied in the case 
of state space equations (that are first order linear 
differential equations) for identification of state space 
matrices. Obviously, the states must be measureable. In 
order to illustrate this, in section 5 are presented the 
numerical results obtained by simulation. 

4. ANALYSIS OF THE ALGORITHM PROPERTIES  

In the following one presents some consistency and 
numerical aspects related to the presented algorithm.  

4.1 Identifiability 

Identifiability is a necessary prerequisite for model 
identification; it concerns uniqueness of the model 
parameters determined from the input–output data, under 
ideal conditions of noise-free observations and error-free 
model structure. A remarkable feature of distribution-
based identification procedure is that it provides a linear 
reparameterization of the input–output relation of the 
nonlinear system. This reparametrization of the system 
involves a very simple identifiability condition to be 
accomplished, that is the existence of the matrix 

1)( −⋅ w
T
w FF  or, equivalently, Fw is of full rank. 

4.2 Consistency 

Obviously, consistency of the estimates is directly 
influenced by the precision of numerical integration used 
to compute the value of the distributions. There are 
available numerous integration methods (often called 
numerical quadrature) with various degree of precision. 
One presents shortly the techniques used in the 
simulations to the approximate calculation of a definite 

integral ∫=
b

a
f dxxfI )(  where f(x) is a given function and 

[a, b] a finite interval. Interpolatory quadrature formulas, 
where the nodes are constrained to be equally spaced, are 
called Newton–Cotes formulas. These are especially 
suited for integrating a tabulated function (such is our 
case). Newton-Cotes numerical integration rule If it is a 

weighted sum of function values: ∑
−

=
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where coefficients {ci} are derived from interpolating 
polynomial fitted for points {xi, fi}. A Newton–Cotes 
formula of any degree n can be constructed. One of the 
simplest integration methods is the trapezoidal rule. The 
trapezoidal rule is based on linear interpolation of f(x) at 
x1=a and x2=b, i.e. f(x) is approximated by  
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The integral of p(x) equals the of trapezoid with base    
(b-a) times the average height  
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To increase the accuracy one subdivides the interval [a, b] 
and assume that fi = f(xi) is known on a grid of equidistant 
points x0 = a, xi = x0 + ih, xn = b, where h=(b−a)/n is the 
step length. The trapezoidal approximation for the ith 
subinterval is 
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where  
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Summing the contributions for each subinterval [xi, xi+1],  
i = 0 : n, gives 
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The global truncation error is 
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This shows that by choosing h small enough we can make 
the truncation error arbitrarily small. In other words, we 
have asymptotic convergence when 0→h . 

In the composite Simpson’s rule one divides the interval 
[a, b] into an even number n = 2m steps of length h and 
uses the formula 
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where 

 S1 = f1 + f3 +· · ·+fn−1, S2 = f2 + f4 +· · ·+fn−2 (31) 

are sums over odd and even indices, respectively. The 
remainder is 

 ],[),()(
180

4
bafabhR IV

T ∈−= ςς  (32)   (54) 

This shows that one have gained two orders of accuracy 
compared to the trapezoidal rule, without using more 
function evaluations. 

Let’s study properties of Newton-Cotes formulas in 
frequency domain (or spectral properties). Newton-Cotes 
rules are symmetric (hence linear phase) digital filters 
with finite impulse response. One of the most important 
characteristic of digital filter is magnitude/frequency 
response – function which shows how much filter damps 
or amplifies magnitude of particular frequency contained 

in input data. So, for trapezoidal rule and Simpson’s rule 
one obtains 
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respectively. 

These transfer functions have the amplitude-frequency 
Bode characteristics from Fig. 4. 
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Fig. 4. Amplitude-frequency bode characteristics:           
a) trapezoidal rule b) Simpson’s rule 

As one can see classical Newton-Cotes formulas suppress 
high frequencies (noise) in the input data. In that sense 
they can be considered low-pass filters. From Fig. 4 one 
observes that trapezoidal rule offers a better suppression 
of noise than the Simpson’s rule, so in the algorithm 
implementation one used the trapezoidal rule for 
numerical integration. 



 
 

     

 

5. EXPERIMENTAL RESULTS 

The performance of the proposed identification algorithm 
was tested by numerical simulations for the state space 
model and on a real plant (using an experimental 
platform) for the input – output case. 

A. Identification of the state space model 

If both current and speed of the load gear (state variables) 
are available for measurements one can identify all the 
motor parameters. The system described by state space 
equations in section 2 was simulated using the following 
parameter values: 

 Ra=2.6; 
 Kt=0.00767; 
 Ke=0.00767; 
 J=3.87e-7; 
 B=1.5e-3; 
 La=180e-6; 

The system was simulated on a time interval of 40 
seconds using a fourth order Runge-Kutta integration 
method in three cases: 

Case 1: Ts = 40 ms, noise free. 
Case 2: Ts = 40 ms, noisy measurements (SNR=40dB). 
Case 3: Ts = 100 ms, noise free.  

As input signal a sum of sinusoids of different amplitudes 
and frequencies was used that constitute a persistently 
exciting signal for the identification. Part of the input 
signal and measured signals in the noise free case are 
presented in figures 5 and 6.  
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Fig. 5. Input signal (voltage) 
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Fig. 6. System response (time evolution of state variables: 
speed [rad/sec] – continuous line and current [A] – dashed 
line) 

TABLE I.   CASE 1: REAL AND ESTIMATED DC MOTOR 
PARAMETERS (TS=40MS, NOISE FREE) 

Parameter Ra Kt Ke J B La 
real 2.6 0.00767 0.00767 3.87e-7 1.5e-3 180e-6 
estimated 
Ts=40 ms 2.6067 0.00687 0.00687 3.56e-7 0.00148 0.000178

TABLE II.  CASE 2: REAL AND ESTIMATED DC MOTOR 
PARAMETERS (TS=40 MS, NOISY MEASUREMENTS, SNR=40DB) 

Parameter Ra Kt Ke J B La 
real 2.6 0.00767 0.00767 3.87e-7 1.5e-3 180e-6 
estimated 
SNR=40dB 2.5344 0.00502 0.00502 2.29e-8 0.00348 0.000195

 

TABLE III.  CASE 3: REAL AND ESTIMATED DC MOTOR 
PARAMETERS (TS=100 MS, NOISE FREE) 

Parameter Ra Kt Ke J B La 
real 2.6 0.00767 0.00767 3.87e-7 1.5e-3 180e-6 
estimated 
Ts=100ms 1.8432 0.00232 0.00232 1.47e-7 0.000511 0.000049

 
As test functions for signals processing three functions of 
exponential type (and their derivatives) were used. The 
corresponding results for the analyzed cases are presented 
in Tables I – III. The simulation results reveal good noise 
rejection properties of the estimation algorithm. This fact 
is due to the filtering properties of the integration 
operation. The estimates are more sensitive to the 
sampling period that influences the truncation error in the 
integration stage. 

B. Identification of input – output model 

If we want to build a model for a system, we should get 
information about it. This can be done by just watching 
the natural fluctuations, but most often it is more efficient 
to set up dedicated experiments that actively excite the 
system. In the latter case, the user has to select an 
excitation that optimizes his own goal (for example, 
minimum cost, minimum time, or minimum power 
consumption for a given measurement accuracy) within 
the operator constraints. The quality of the final result can 
depend heavily on the choices that are made. 

 

                              

 

                                

 Fig. 7.  System identification experimental setup  
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Fig. 7 shows the experimental setup requirement prior to 
the parameter identification. This is the recording phase. 

1. Deploy a data acquisition system, which can record the 
input and output at the required sampling frequency 
(according to the system dynamics). 
2. Feed the system with rich inputs. (Inputs must change 
with time). 
3. Record the inputs and corresponding outputs 
simultaneously using this data acquisition system. 

To illustrate the performance of the proposed 
identification algorithm, one identifies a real Quanser 
experiment using a DC servomotor with built in gearbox. 
The “rotational series” that we have is the SRV-02ET   
(E-encoder, T-tachometer), and the DC servo is shown in 
the Fig. 8 (Quanser, 1998). A high quality DC servo 
motor is mounted in a solid aluminium frame. The motor 
drives a built-in 14:1 gearbox whose output drives an 
external gear. The motor gear drives a gear attached to an 
independent output shaft that rotates in a precisely 
machined aluminium ball bearing block. 

The output shaft is equipped with an encoder. This second 
gear on the output shaft drives an anti-backlash gear 
connected to a precision potentiometer. The potentiometer 
is used to measure the output angle. The external gear 
ratio can be changed from 1:1 to 5:1 using various gears. 
Two inertial loads are supplied with the system in order to 
examine the effect of changing inertia on closed loop 
performance. In the high gear ratio configuration, rotary 
motion modules attach to the output shaft using two 8-32 
thumbscrews. The square frame allows for installations 
resulting in rotations about a vertical or a horizontal axis. 
The system is interfaced by means of a data acquisition 
card and driven by Wincon 5.0 based real time software. 

WinCon™ is a real-time Windows application. It allows 
you to run code generated from a Matlab/Simulink 
diagram in real-time on the same PC (also known as local 
PC) or on a remote PC. Data from the real-time running 
code may be plotted on-line in WinCon Scopes and model 
parameters may be changed on the fly through WinCon 
Control Panels as well as Simulink. The automatically 
generated real-time code constitutes a stand-alone 
controller (i.e. independent from Simulink) and can be 
saved in WinCon Projects together with its corresponding 
user-configured scopes and control panels. 

WinCon software actually consists of two distinct parts: 
WinCon Client and WinCon Server. They communicate 
using the TCP/IP protocol. WinCon Client runs in hard 
real-time while WinCon Server is a separate graphical 
interface, running in user mode. The measured input–
output data are transferred to the computer by a data 
acquisition card (Quanser Q4, 33 MHz PCI bus interface, 
12 bit high speed A/D converter (Quanser, 1998)). The 
data acquisition card permits use of user defined programs 
interfaced with Matlab. The output speed is obtained from 
the tacho-generator. 

 

Fig. 8. Quanser SRV02ET DC Motor experiment 

 

 
 
Fig. 9. The input signal and system response (dotted line) 
 
One obtains the follwing transfer function: 

 
01

2
2

0)(
asasa

b
sH cc

++
=  

where 
 

 

000901.0
00011116.0

005852.2
00753.0

0

1

2

0

=
=

−=
=

a
a

ea
b

 

The input signal and system response are presented in Fig. 
9. The validation of the model is realized by the 
comparison between the output of the identified model 
and the real plant at the same input (that was a sum of 
sinusoids). The result is presented in Fig. 10.  
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Fig. 10. Real system and estimated model responses to the 
same input signal 

 

6.  CONCLUSIONS 

In this paper, a novel parameter estimation method for 
linear system identification based on the distribution 
algorithm was developed. The distribution algorithm has 
been shown to be versatile when applied to parameter 
estimation, without requiring a detailed mathematical 
representation of the identification problem. This 
procedure is a functional type method, which transforms a 
differential system of equations to an algebraic system in 
unknown parameters. The relation between the state 
variables of the system is represented by functionals using 
techniques from distribution theory based on testing 
function from a finite dimensional fundamental space. 
The identification algorithm has a hierarchical structure, 
which allows obtaining a linear algebraic system of 
equations in the unknown parameters. The coefficients of 
this algebraic system are functionals depending on the 
input and state variables and are evaluated through some 
testing functions from distribution theory. The 
effectiveness of system identification using the 
distribution algorithm was researched and a satisfactory 
performance was obtained. The simulation results show 
that the proposed method achieved a minimum tracking 
error and estimated the parameter values with high 
accuracy. The method was also applied to estimate the 
parameters of a DC motor commonly used in industry. 
The influence of the sampling period, initial conditions, 
test functions type, input type and noise on the parameters 
estimates was empirically analyzed. The algorithm 
provides very good results even the measurements are 
noise contaminated because the evaluation of states 
derivatives is completely avoided.  
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