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Abstract: This paper presents a faster method for robot modelling by direct kinematics using „Complete 
Kinematical Structure – CKS”. It is a structure with 3 revolute joints and 3 prismatic joints which can 
assure a complete positioning and orientation in space for an object attached to its terminal. Its 
homogeneous transformation operator between fix frame (RF) and mobile frame (RM) is determined. An 
algorithm for robot modelling by CKS is enunciated. This structure is a useful tool for a faster 
establishing of the kinematical model (direct problem) for the robot arms and helps to resolve the inverse 
kinematical problems in some situations. By classical methods we obtain the same operator if we have 
the same position and orientation for the frames R0 (fix) and RM (mobile). Using this procedure, a great 
part of tedious and time-consumer operations of matrix multiplication (present in classical method) is 
eliminated. Finally, two applications of some robotic structures are presented. 
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                                 1. INTRODUCTION 

Usually, in order to deal with the complex geometry of a 
manipulator and to obtain the kinematical equations of the 
robot models we will attach frames to the various parts of the 
mechanisms and then describe the relationship between these 
frames. Since the links of a robot arm may rotate and/or 
translate with respect to a reference coordinate frame, the 
total spatial displacement of the end-effector is due to the 
angular rotations and linear translations of the links (Schilling 
1990). The central topic is a method to compute the position 
and orientation of the manipulator’s end-effector relative to 
the base of the manipulator as a function of the join variables 
(Paul 1981a, 1981b, Ivanescu 1994, 2003, Groover 1986, Fu 1987, 
Klafter 1989). Denavit and Hartemberg (1964) proposed a 
systematic and generalized approach of using matrix algebra 
to describe and represent the spatial geometry of the links of 
a robot arm with respect to a fixed reference frame. The 
advantage of using the Denavit-Hartemberg representation of 
linkages is its algorithmic universality in deriving the 
kinematical equation of the robot arm (Asada 1986), (Bishop 
2002), (Coiffet 1983), (Craig 1989). By Denavit-Hartemberg 
method results a homogeneous transformation matrix for 
every couple of two adjacent rigid mechanical links and all 
those matrices have to be multiplied. This transformation is a 
function of the four parameters: only one variable, the ather 
three parameters beind fixed by mechanical design (Drimer 
1985, Murray 1994, Ispas 1990, Ranky 1985). By defining a 
frame for each link we have broken the kinematics problem 
in n subproblems. In order to solve each of these 
subproblems we have break the problem into four sub-
subproblems (Renaud 1980, Davidoviciu 1986, Lamineur 1984, 
Pelecudi 1985, Pieper 1968, Samson 1981, Stadler 1992). Present 
method is based on DH approach but decreases drastically the 

number of the matrices and simplifies a lot the calculations of 
matrix product (Stoian 1994, 2003, 2006, Tzai 1984).  

 
Fig. 1. Complete Kinematical Structure (CKS) 
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       2. COMPLETE KINEMATIC STRUCTURE (CKS) 

We name the kinematical structure from Figure 1 a “complete 
kinematical structure” (CKS) because, with 3 rotation joints 
and 3 translation joints, it can assure a complete positioning 
and orientation in space for an object attached to its terminal. 
The above mentioned two operations are not uncoupled. This 
structure is a useful tool for a faster establishing of the 
kinematical model (direct problem) for the robot arms and 
helps to resolve the inverse kinematical problems in some 
situations. By classical methods we obtain the same operator 
if we have the same position and orientation for the frames 
R0 (fix) and RN (mobile). Using this procedure, a great part 
of tedious and time-consumer operations of matrix 
multiplication (present in classical method) is eliminated. 

3. THE HOMOGENEOUS TRANSFORMATION 
OPERATOR TCKS 

For determining of the transfer homogeneous operator TCKS 
we will use the DH approach allocated to the structure from 
Figure 1. In Figure 2 we present the mapping of the body-
attached coordinate frame over the rigid mechanical links by 
first steps of the DH algorithm. 

 

 
 

Fig. 2. Maping of the body-attached coordinate frame 
 
The next steps establish the sets of the DH parameters for 
each transformation between two adjacent frames. These sets 
are presented in Table 1. The joint coordinate vector has the 
following structure:  

    q = [δ1, θ1, δ2, θ2, δ3, θ3]T                                              (1) 

Table 1. DH Parameters 

 
 ai αi di θi 

T1
0 0 0 δ1 0 

T2
1 0 -π/2 0 θ1 

T3
2 0 0 δ2 0 

T4
3 0 π/2 0 θ2 

T5
4 0 0 δ3 0 

T6
5 0 0 0 θ3 

 
We obtain the general transfer operator TCKS by the product 
between the six intermediate homogeneous transformation 
operators obtained from Table 1 and by  DH operator 
(Groover et al. 1986), (Klafter 1989): 
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4. ALGORITHM FOR KINEMATICAL MODEL 

The next algorithm is established as follows: 
 
- The kinematical structure of the robot is determined. 
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- A suitable representation with symbols of revolute/prismatic 
joints is made (kinematical schema). 
 
- On this structure, a minimum number of CKSs is identified 
in order to cover it. 
 
- For each identified CKS, a set of geometrical and 
movement parameters is appropriately established to the 
associated area from the kinematical schema. 
 
- For each CKS, a homogeneous transformation operator (1) 
is calculated with the set of the parameters established to the 
previous step: T1

CKS, T2
CKS …  

 
- If multiple operators result, we make their product to obtain 
the general transformation operator T. 

The homogeneous transformation operator, which makes 
the transformation between the coordinates of a point P, 
related to the mobile coordinate frame RM and the point P 
coordinates related to the reference frame RF considered fix, 
is presented bellow: 
 

T = T1
CKS · T2

CKS · · · · TN
CKS                                   (3) 

 
                                  5. APPLICATIONS 

5.1. Application 1 
 

 
Fig. 3. Robotic kinematical structure for the Application 1 

 

 
Fig. 4. Considered robotic kinematical structure 

We want to obtain the kinematical model of the robotic 
structure from Figure 3. 

This structure is redrawing in Figure 4 for an easier 
comparing with CKS. 

In Figure 5 we represented the mapping of the necessary 
frames. After comparing of the structure from Figure 4 with a 
CKS and determining of the geometrical and moving 
parameters from Figure 5, we obtain the parameters presented 
in relations (4): 

 

 
 

Fig. 5. Mapping of the coordinate frame 
 

δ1 ← d  δ2 ← 0              δ3 ← δ 
θ1 ← θ  θ2 ← - π/2        θ3 ← 0                          (4)
      

Those parameters represent entries for the operator TCKS from 
(2). The expression of TCKS becomes (5): 
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By classical methods we obtain the same operator if we have 
the same position and orientation for the frames R0 (fix) and 
R2 (mobile). 

5.2. Application 2  

In this second case we want to obtain the kinematical model 
of the robotic structure from Figure 6. This structure is a 
more complex structure and we need 3 CKSs for cover it 
because there are 3 joints which have the parallel axis.  

The first CKS covers the first two joints, the second CKS 
covers the third joint and the third CKS covers the last two 
joint of the robot. In this case we need to attach 2 
intermediary frames: first (R’) on link index 2 and the second 
(R’’) on link index 3.  

For the first substructure (Figure 7) we identify the 
parameters (6) of the CKS1 and the operator T1

CKS (7) results 
applying (2), for the second structure (Figure 8) we identify 
the parameters (8) of the CKS2 and the operator T2

CKS (9) 
results applying (2) and for the last structure (Figure 9) we 
identify the parameters (10) of the CKS3 and the operator 
T3

CKS (11) results applying (2). 
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Fig. 6. Robotic structure for the Application 2 

 
 

Fig. 7. First robot substructure 
 
 δ1 ← d1         δ2 ← 0                    δ3  ← 0 

θ1 ← θ1        θ2 ← -π/2 + θ2      θ3  ← 0                     (6) 
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δ1 ← a2,      δ2 ← 0   δ3 ← 0   
θ1 ← 0        θ2 ← θ3    θ3 ← 0                                    (8) 
 

 

 
 

Fig. 8. Second robot substructure 
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Fig. 9. Third robot substructure 
 
 δ1 ← a3         δ2 ← 0     δ3 ← d5 

θ1 ← 0          θ2 ← θ4      θ3 ← θ5                              (10) 
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The operator between the end-effector coordinate frame and 
the reference coordinate frame is: 
 
 T(θ1, θ2, θ3,θ4, θ5) =  
 
 T1

CKS (θ1, θ2) · T2
CKS (θ3) ·T3

CKS (θ4, θ5) =  
 
 TARM(θ1, θ2, θ3) · TTERM(θ4, θ5) = 
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Notations:  S2 = sin θ2;  C2 = cos θ2;  S23 = sin (θ2 + θ3); 
                   C23 = cos (θ2 + θ3);  S234 = sin (θ2 + θ3 + θ4); 
                   C234 = cos (θ2 + θ3 + θ4)  
 

                                 6. CONCLUSIONS 

The direct kinematics problem is reduced to find a 
transformation matrix that relates the body-attached 
coordinate frame to the reference coordinate frame using 
vector and matrix algebra. By Denavit-Hartemberg method a 
homogeneous transformation matrix results for every couple 
of two adjacent rigid mechanical links and all those matrices 
have to be multiplied. 

This paper presents a faster method for robot modelling by 
direct kinematics using „Complete Kinematical Structure” 
(CKS) which is a structure with 3 revolute joints and 3 
prismatic joints which can assure a complete positioning and 
orientation in space for a object attached to its terminal. Its 
homogeneous transformation operator between fix frame and 
mobile frame is determined and used in an algorithm for 
robot modelling. Finally, two applications of some robotic 
structures are presented. 

Present method is based on DH approach but decreases 
drastically the number of the matrices and simplifies a lot of 
the calculations. 

By classical methods we obtain the same operator if we have 
the same position and orientation for the frames R0 (fix) and 
RN (mobile). 

Using this procedure, a great part of tedious and time-
consumer operations of matrix multiplication (present in 
classical method) is eliminated. 
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