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Abstract: In real classification applications the patterns of different classes often overlap. In this 
situation the most appropriate classifier is the one whose outputs represent the class conditional 
probabilities. These probabilities are calculated in traditional statistics indirectly, in two steps: first 
the underlying prior probabilities are estimated and then the Bayes rule is applied. Popular 
methods for density estimation are Parzen Window and Gaussian Mixture. It is also possible to 
calculate directly the class conditional probabilities using the logistic regression, k-Nearest 
Neighbours algorithm or a Multilayer Perceptron Artificial Neural Network. Many methods, direct 
or indirect, perform poorly when the underlying prior probability densities are discontinuous along 
the support’s border. This paper will present a method for detecting the discontinuity by analyzing 
samples drawn from the underlying density. Knowing the densities are discontinuous will help to 
choose an estimator insensitive to discontinuities.   
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1. INTRODUCTION 

In statistical pattern recognition, classification means 
assigning an object or a fact to a predefined class. The 
object or fact is represented by a subset of its attributes, 
say d. Supposing that the attributes are numerical or can 
be converted to numbers, each object’s representation 
becomes a point, or a vector, in Rd. The classifier has to 
distinguish between classes trying to isolate homogenous 
regions. A region is considered homogenous if it contains 
vectors belonging to one class only. 

Unfortunately, homogenous regions are rare; most of the 
times there is a degree of overlapping between them. This 
degree of overlapping is due to the fact that some 
essential attributes were not recorded.  Financial data sets 
are well known for their high degree of overlapping. If the 
data set exhibits such a degree of overlapping, the best 
classifier is the one whose outputs represent a posteriori 
conditional probabilities or, in other words, the class 
conditional probability.  

There are two approaches to calculate the class 
conditional probabilities. According to the first, these 
probabilities can be calculated using the well known 
Bayes rule from the statistics field: 
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In (1), P(ωk) is the probability of class ωk, p(x) is the 
probability density function (pdf) of the feature vector x 
and  p(x|ωk) is the conditional probability density of x in 
class ωk, known a priori. If we choose to follow the 

traditional statistical approach in order to calculate the 
class conditional probability, first we have to estimate the 
probability density of x in every class. Two well known 
methods used to estimate the probability density function 
from data are Parzen window and Gaussian Mixture 
Model (GMM). 

The second approach relays on a special form of the error 
function. Ruck et al. (1990) showed that the outputs of a 
Multilayer Perceptron (MLP), when trained as a classifier 
using backpropagation, approximate the posterior 
conditional probabilities. This finding is not specific to 
MLP, but it holds true for any classifier that uses the sum-
of-squares or the likelihood as error function. In this 
category also fall the logistic regression and k-Nearest 
Neighbors algorithm.  

The performance of many classifiers deteriorates when 
the underlying prior probability densities p(x|ωk) are       
not fully supported in Rd and, additionally, these densities 
are not continuous along the support’s frontier. For 
example, the standard uniform distribution is supported in 
the interval [0, 1] only and it is discontinuous in 0 and 1; 
the exponential distribution’s support is [0, ∞), being 
discontinuous in 0.  

The discontinuity does not affect the classifiers in the 
same degree: some classifiers are more affected than the 
others but there are classifiers that are not affected at all. 
If the closed form of the prior densities are known, it is 
easy to say if they are discontinuous or not and choose a 
classifier less sensitive. But in real life situations, the 
densities must be estimated from input data. 



 
 

     

 

Consequently, the closed form is unknown, so we cannot 
say if they are discontinuous or not. 

The remainder of this paper is organized as follows. 
Section 2 presents the effect of the discontinuity on 
density estimation and Section 3 presents a method that 
detects the discontinuity analyzing samples drawn from 
that discontinuous density. 

2. THE EFFECT OF THE DISCONTINUITY   

One widely used method for density estimation is the 
Parzen window. Let x1, x2,…., xn be n independent and 
identical distributed samples drawn from some 
distribution with an unknown density f. Density f can be 
estimated as  
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where K(·) is the kernel and h>0 is the smoothing 
parameter or bandwidth. This kind of estimation is called 
kernel density estimator or Parzen window. The kernel is 
a symmetric function that integrates to one. A range of 
kernel functions are commonly used: uniform, triangular, 
biweight, triweight, Epanechnikov and normal.  

However, the estimator does not take into account the 
potential finite support of the feature vector x. When the 
support of some of its components is bounded, for 
example, in the case of nonnegative data, the standard 
kernel estimator gives weight outside the support. This 
causes a bias in the boundary region. In order to outline 
the Parzen window behaviour for discontinuous density, 
we will consider the standard exponential density. We 
drawn 1000 points and then we estimated the density 
using the Parzen window. The result is shown in Fig. 1. 

 
Fig. 1 Exponential density estimated from 1000 input 
vectors by a Parzen estimator. 

 The boundary bias problem of the standard kernel is well 
documented in the one-dimensional case, many solutions 
being proposed. In the one dimensional case the random 
variable is either positive, being discontinuous in zero, or 
is restricted to (0, 1) interval, being discontinuous in 0 and 
1. An initial solution to the boundary problem is given by 
Schuster (1985), who proposes to generate data outside 
support by reflection. This solution is simple and easy to 
implement but it only works when the first derivative of 

the generator density is zero to the right or to the left of 
the discontinuity. As this requirement is rarely fulfilled, 
Cowling and Hall (1996) also generated new data outside 
the support but their location is determined now by 
interpolation, not by reflection. A different solution 
proposed by Marron and Ruppert (1994), consists in 
transforming the input data such as the discontinuity or 
discontinuities disappear. The function g(.) transforms the 
data such as g(0) and possibly g(1) are zero. Müller 
(1991) and many others suggest the use of adaptive 
boundary kernels at the edges and a fixed standard kernel 
in the interior region. More recently, Bouezmarni and 
Rombouts (2006) study the gamma kernels for univariate 
nonnegative data.  

The boundary bias problem becomes more severe in the 
multivariate case because the boundary region increases 
with the dimension of the support and become more 
complex. In the one-dimensional case the frontier is a 
point and can be easily detected but in the 
multidimensional case it becomes a hypersuface. In this 
case any solution presented so far can be adapted only if 
the closed form of the boundary is known. In real life this 
is rarely the case, so Parzen estimator must be avoided if 
data are bounded and the boundary is not known.  

Another popular method in probability density estimation 
is the Gaussian Mixture Model (GMM). The probability 
density function of the observed data is represented as a 
superposition of m multivariate Gaussian pdfs  
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where x is a d-dimensional observation from the data set, 
ρj (,j=1,…,m), are the component weights, summing up to 
unity, 1=∑ jρ  and N(x, μj, Cj) is a multivariate normal 
density with mean vector μj and covariance matrix Cj. 
The negative log-likelihood of a data set made of n 
observations, given by 
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can be used as an error function. Its minimization through 
the expectation-maximization (EM) algorithm offers the 
optimal values for the GMM’s parameters ρj, μj and Cj. A 
review of mixture models, maximum likelihood and EM 
algorithm has been given by Redner (1984).  

GMM gives very good results if the densities to be 
estimated are continuous. It can be shown that any 
continuous pdf can be approximated arbitrarily closely by 
a Gaussian mixture density. But little work has been done 
in the field of discontinuous densities, being only two 
papers that address this problem.  

Hedelin and Skoglund (2000), developing a method for 
high-rate vector quantization in speech coding, found that 
GMM performance is degraded when the density to be 
estimated has bounded support. In order to outline the 
GMM behaviour for discontinuous density, we’ll consider 
the example used in Parzen window. Same 1000 points 



 
 

     

 

were used to estimate the exponential density using a GM 
with 5 components. The result is shown in Fig. 2. 

 
Fig. 2. Exponential density estimated from 1000 input 
vectors by a GMM with 5 components.  

Hedelin and Skoglund proposed a version of the EM 
algorithm for such densities and named the new algorithm 
EMBS.  Although the EMBS algorithm provides an 
interesting solution to the bounded support issue, it cannot 
be used when the analytical form of the support is not 
known.  

Another author that emphasizes the poor performance of 
GMM for discontinuous densities is Likas. In Likas 
(2001) the author developed a method for pdf estimation 
based on a multilayer perceptron neural network and 
compared it against the traditional GMM. The densities 
estimated exhibit discontinuities that affect the 
performance of GMM.  

A detailed analysis of GMM versus MLP performance for 
discontinuous densities can be found in Lemeni (2009). 
The paper outline the oscillating behaviour of GMM due 
to the discontinuity through one and two-dimensional 
examples and the good performance of MLP in the same 
examples. The author claims that MLP is superior to 
GMM for class conditional probability estimation when 
the underlying priors are discontinuous. 

Discontinuous densities by definition, such as the 
exponential and the uniform densities, as well as 
truncated densities were used to asses the performance of 
two other methods: logistic regression and k-Nearest 
Neighbours (kNN). The results sowed that the logistic 
regression is not affected by the discontinuity but kNN is. 
Because some estimators are severely affected in the 
vicinity of the discontinuity, we need a method that is 
able to analyse samples drawn from an unknown density 
and tell if that density is discontinuous or not.   

3. THE MASS CENTER METHOD FOR 
DISCONTINUITY DETECTION 

In many real life situations, the densities to be estimated 
from input data originate from fully supported densities 
which have been truncated. Such a situation is common in 
the financial field.  

Financial data are constrained, those constrains being 
either an effect of a law or specific to a particular 
company.  For instance, quantities such as height or 

weight of a person are normally distributed with no 
restriction. On the other hand, other quantities such as the 
gross salary, must obey a legal constraint, namely the 
minimum living wage. 

 
Fig. 3. Minimum living wage histogram in Romania, year 
2005.  

Fig. 3 presents the histogram of the minimum living wage 
in Romania, year 2005, taken from a study of the Group 
of Applied Economics (2008) on the impact of the flat 
income tax. The distribution’s shape seems to be normal, 
except the missing left side of the graphic. The truncation 
is the effect of the minimum living wage law and makes 
the distribution discontinuous for this value. The 
minimum living wage was 330 RON in 2005. 

Banks often use such quantities, e.g. gross salary and age, 
for classification and regression. If a bank accepted all the 
applications for a credit with no restriction, salary and age 
histograms would have the shape in Fig. 3, because there 
cannot be salaries less than the minimum living wage or 
clients younger than 18 years. 

Generally, if the histogram of an attribute describing a 
real object, fact or event has the shape from Fig. 3, this is 
a clear indication of a discontinuous underlying density.   

Constrains considered before are generated by the current 
legislation and the financial institutions must obey them. 
But there are a second type of constrains, this time self-
imposed. For example, a bank trying to lend money only 
to non default customers, will accept an application if a 
certain criterion is met. Such a criterion is the credit score 
of the requester. Most of the time the credit score is 
calculated with Fisher’s linear discriminant or one of its 
variants. The credit-score criterion will act as a knife, 
cutting the data space, so there will be records only for 
borrowers with a credit-score greater than a certain 
threshold. In the attribute space the credit-score criterion 
will act as a separating hypersurface: on one side there are 
no vectors, many vectors being on the other side in the 
vicinity of that hypersurface. Moreover, in real 
applications, the analytical form of the separating 
hypersurface may be not known. In many cases we do not 
even realize that the support has a border and the pdf to be 
estimated is discontinuous along this border. As it will be 
shown soon, the attributes’ histograms are useless in 
situations like these. 



 
 

     

 

As before, let’s suppose that potential customers of a bank 
are described by two attributes, salary and age. After 
normalization they are Gaussian distributed with mean 
μ=(1, 1) and covariance matrix Σ=I. Let’s again suppose 
that the bank’s credit-score is calculated as 
nsalary+nage≥2, where the leading n stands for 
“normalized”. This criterion creates the distribution of the 
accepted customers. Its support consists of all the points 
in R2 for witch the score criterion is fulfilled. Thus the 
distribution of accepted customers is obtained from the 
distribution of potential customers by truncations along 
the line of equation nsalary+nage=2. This line is the 
support’s frontier. In Fig. 4, 4000 random vectors were 
drawn from the distribution of the potential customers and 
only those fulfilling the score criterion were plotted.   

 
Fig. 4. Example of truncated data. 

The data layout is typical for a financial institution that 
applied a score criterion. Hereinafter we want de 
determine how this type of truncation reflects in the 
attributes’ histograms. 

In Fig. 5 is presented the histogram of nsalary attribute 
after truncation.  

 

 
Fig. 5. Histogram of  the nsalary attribute after truncation. 

The histogram of nage has the same shape and has not 
been presented. The histogram rather suggests a normal 
distribution and doesn’t offer any indication on the 
discontinuity at the support’s border. For the two-
dimensional example presented so far is easy to detect the 
discontinuity if we build a scatter plot as the one 

presented in Fig. 4. Unfortunately this approach is almost 
impossible for three dimensions and impossible for four 
dimensions or more.  

For more than two dimensions the discontinuity can be 
detected if we analyze the spatial distribution of k 
neighbors of an input vector. The analysis must be 
conducted for all available input vectors. All those k 
neighbors lie in a d-sphere centered at the input vector 
with radius given by the distance between that input 
vector and the farthest neighbor. If the number k of 
neighbors is chosen so the generator density is constant in 
the vicinity of the input vector under analysis and every 
neighbor is seen as a small particle with one unit mass, 
then the mass center of all neighbors will overlap the 
geometric center of the d-sphere surrounding them.  This 
situation is depicted in Fig. 6a. 

 
a) b) 

Fig. 6. Position of the neighbors’ mass center relative to 
their geometric centre. 

On the other hand, if the input vector under analysis lies 
exactly on the support’s border and, additionally, the 
support’s border can be approximated by a hyper plane, 
then the neighbors will form a homogenous hemi d-sphere 
with radius R. The position of the hemi d-sphere’s mass 
center will no longer coincide with the geometric center. 
For d=2 the mass center lies at 4R/(3π) units apart from 
the geometric center and for d=3, at 3R/8. Fig. 6b presents 
the position of the mass center for d=2. 

In real conditions the neighbors’ density is not perfect 
uniform, so a 5% deviation of mass center’s position from 
the position corresponding to the uniform distribution is 
accepted.  

Considering the example from Fig. 4, the input vectors 
with the mass center placed 4R/3π ±5% apart from the 
geometric center are represented as black squares in Fig. 
7. The radius R is chosen such as the d-sphere (circle for 
d=2) of the input vector under analysis contains 40 
neighbors. The optimal number of neighbors will be 
discussed later.  

Analyzing the distribution of the black squares in figure, 
we notice two input vector categories: input vectors lying 
on the support’s frontier, such as v1, and vectors lying in 
low density zones, such as v2. The mass center criterion 
indicates correctly the “on border” position for the vectors 
belonging to the first category and fails for the second. 
The category can be decided by the radius of the 
neighbors’ circle. An analysis of the radius of the 



 
 

     

 

neighbors’ circle indicates a small radius for v1 and a big 
one for v2: v2’s radius is almost five times bigger than 
v1’s in figure. But a five time bigger radius means a 25 
times lower density in v2’s circle compared to the density 
in v1’s circle. Because the area of the circle 
corresponding to v2 is too big, the underlying pdf is no 
longer constant in this zone. This is why the mass center 
criterion fails for such input vectors. In order to make this 
criterion work, the vectors lying in low density zones 
must not be analyzed. 

 
Fig. 7. Input vectors (black squares) lying on the 
support’s frontier. 

The vectors lying in low density zones can be filtered out 
based on the radius of the neighbors’ d-sphere. Let’s 
suppose that the d-sphere contains k neighbors. First we 
calculate the radius corresponding to the largest density. 
As density and radius are inversely proportional, the 
highest density zone contains the vectors with the smallest 
associated radii. In order to eliminate an exceptional small 
radius, due to an exceptional distribution, we sort the radii 
of the d-spheres which encompass k neighbors in 
ascending order and then we chose the tenth radius as the 
minimum radius. This value has been chosen after many 
simulations for different pdfs and vector numbers has 
been carried out. 

Let ρmax denote the largest density and Rmin the 

corresponding radius. Then d
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d represents the number of dimensions and p is a constant 
depending on d. For d=2 the d-sphere is a circle and its 
“volume” is πR2, so p= π. In 3 dimension the d-sphere is a 
ball and its volume is 4/3πR3, so p= 4/3π. If we analyze 
the position of the mass center only for vectors lying in 
zones with density at least ρmax/n, a threshold radius can 
be expressed as follows: 
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For n=3 the threshold radius is min3RRth = . This value 
has been chosen after many simulations for different pdfs 
and vector numbers. The filtering based on Rth was 

applied to the vectors from Fig. 4, only the vectors lying 
in zones with density greater than ρth being analyzed. 
From the selected vectors, those with the mass center 
placed 4R/3π ±5% apart from the geometric center are 
represented as black squares in Fig. 8. 

 
Fig. 8. Input vectors (black squares) from high density 
zones lying on the support’s frontier. 

Comparing Fig. 7 and Fig. 8 we notice that the vectors 
from low density zones, previously wrongly indicated as 
lying on border, were eliminated. 

The last parameter we have to discuss is the number of 
neighbors k. If this number is too small, the estimation of 
the mass center’s position will be erroneous. For example, 
considering only one neighbor, we can obtain any mass 
center deviation between 0 and 1. A small number of 
neighbors cannot correctly describe the underlying 
density and will result in a large number of erroneous “on 
border” indications. On the other side a large number of 
neighbors means a large corresponding volume where the 
vectors’ density is no longer constant. This situation will 
result again in a large number of erroneous “on border” 
indications. Concluding, the erroneous indication will be 
obtained for a small number as well as for a large number 
of neighbors.  We can guess that there is an optimal 
number of neighbors for witch the “on border” indication 
is correct. For a larger or a smaller number of neighbors 
the mass center method will indicate more vectors lying 
on border. This is why the graph of the number of vectors 
lying on border as a function of the number of neighbors 
should have a V shape. In order to test this hypothesis, we 
plot this graph for the example in Fig. 4. The number of 
neighbors varies between 10 and 200 with a step of 10. 
The resulting graph is presented in Fig. 9a. Figure also 
plots same function for the original (not truncated) 
density )),1,1(( IΣ ==μN . Regardless the number of 
neighbors k, the non zero number of “on border” vectors 
and the V-shape graph for the truncated data set confirm 
the above hypothesis. Furthermore, we notice that the 
number of “on border” vectors for the original, non 
truncated, data set is zero for a large number of k values. 



 
 

     

 

Now, the graph of the number of vectors lying on border 
as a function of the number of neighbors has an L shape.  

 

 
Fig. 9 Vectors lying on border as a function of the number 
of neighbors. 

Similar results have been obtained for three dimensional 
data. The generator density used in this example was 

)),1,1,1(( IΣ ==μN  and the truncation criterion was 
3321 >++ xxx . The graph of the number of vectors lying 

on border as a function of the number of neighbors for 
both the truncated and non truncated densities are 
presented in Fig. 9b. We notice a remarkable similarity 
with the graph corresponding to the two dimensional case. 

The next test has been carried out on real data originating 
from the credit data base of CEC Bank.  

 
Fig. 10 Vectors lying on border as a function of the 
number of neighbors for CEC Bank credit records. 

The records from data base were preprocessed and then 
used to create a data set consisting of 7502 four-
dimensional vectors. This data set was tested for 
discontinuity by the mass center method. The graph of the 

number of vectors lying on border as a function of the 
number of neighbors is shown in Fig. 10. The graph has a 
V shape and the number of “on border” vectors is never 
zero. These two characteristics are a clear indication that 
the CEC data set is discontinuous.  

4. CONCLUSIONS 

Many data sets originating especially from financial field 
are truncated due to some legal restrictions or a self 
impose criterion. The discontinuity along the support’s 
border affects the performance of some estimators such as 
Parzen window, GMM or kNN while other estimators 
such as MLP or logistic regression are less affected.  

This paper will present the mass center method for 
detecting the discontinuity. Knowing the densities are 
discontinuous will help to choose an estimator insensitive 
to discontinuities. The performance of the mass center 
method was tested in many runs on artificial data drawn 
from different densities, with different dimensions, 
truncation criteria and size. The method was always able 
to indicate the presence of the discontinuity.  
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