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Abstract: Diabetes mellitus is a disease with a constant, significant increase in the number of 
patients, low quality of life and high medical care costs. In this moment we have many diabetes 
patients with poor control of blood glucose. Some authors consider that the closed-loop system, 
(artificial pancreas) is the best solution. An extra-corporeal blood glucose sensor is coupled to a 
computer, which controls the rate of infusion of insulin so as to maintain normal glycaemia. This 
paper presents the structure of predictive algorithm that can remove most erroneous values. In 
addition, several numerical simulation results are given where the proposed predictive method 
outperforms well-known average and median voters. The results of this study can be also applied, 
to other physiological systems; it offers important data for the medical practice. These findings 
may have significant clinical implication in diagnosis of the diabetes mellitus, in blood glucose 
monitoring and in the management of the diabetes therapy. 
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of blood glucose. 

 
1. INTRODUCTION 

Diabetes mellitus is a disease with a constant, significant 
increase in the number of patients, low quality of life for 
patients and high medical care costs. Self monitoring 
blood glucose, continuous glucose monitoring system, 
insulin pumps and new specific drugs have radically 
changed life quality and expectance in diabetes patients. 
These new devices have allowed the technical realisation 
of the closed-loop artificial pancreas. Optimal glycaemia 
control in medical practice is being evaluated on the level 
of HbA1c and the amount of hypoglycaemic episodes. To 
ensure to the patients with diabetes a lifestyle as close to 
normal are required: 

 Monitoring of blood glucose. 

 Providing the necessary amount of insulin for 
maintaining the blood glucose to normal values 
for the human body. 

Recent advances (Cauter, Kenneth, 1997), (Troisi, Cowie 
et al., 2000), reveal the oscillator behaviour of the insulin 
secretion and consequently the intrinsic dynamics of 
blood glucose control in healthy human and diabetic 
patients. The systems used for continuous glucose 
monitoring offer the recordings of time series of blood 
glucose values for 72 hours. The information about 
physiological blood glucose control and the 
physiopathology of diabetes mellitus could be subtracted 
with proper mathematical methods from the experimental 
data acquisition. The sources of blood glucose are: the gut 
in the digestive states, post absorptive of the meal and the 

liver in the inter-digestive states. The blood glucose is 
used in all cells under the absolute control of the insulin 
(exceptions: red blood cells and neurons). So, the medical 
concept in the diabetes management was focused on the 
insulin dynamics and insulin therapy. Physiologically, 
insulin stimulates glucose uptake by insulin sensitive 
tissue (mainly skeletal muscle and adipose tissue) and 
inhibits hepatic glucose production. Insulin secretion is an 
important oscillatory process and insulin oscillations are 
followed by plasma glucose oscillations. The glucose 
values are registered in a discrete manner by intermitted 
measurements. The sample rate must be adapted for the 
specific dynamics of the biological parameters used for 
the experimental recordings. The actual protocols used in 
diagnosis and management of the diabetes mellitus 
include the classical clinical trials and the physicians’ 
experience, but they do not account by the dynamics of 
the blood glucose and insulin. So, it is natural to have 
many diabetes patients with poor control of blood glucose 
values. The blood glucose dynamical pattern ascertained 
by mathematical methods (Iancu, 2003), (Makroglou et 
al., 2006) for each patient could significantly improve the 
diabetes treatment in the future. 

2. CONTINUOUS MONITORING OF GLYCAEMIA 

The continuous glucose monitoring system (CGMS) uses 
a sensor for the measuring of the blood glucose, placed 
under or on the skin. The tested methods are of great 
diversity: the oxidation reaction of glucose, reverse 
ionophorese, micro dialyse, spectroscopy, techniques 
based on the laser and fluorescent lights. The sensors 



 
 

     

 

measure the glucose concentration at 5, 15 or 60 minute 
intervals. Basically, the system can realise the monitoring 
of the glycaemia with exceptional results: 

 The continuous recording of the glycaemia 
values and their tendencies. 

 The recording of all hypoglycaemia or 
hyperglycaemia episodes. 

Measurements given by the CGMS are affected by 
perturbations (movement of the sensor, incomplete 
contact, etc.). Because of this, it is necessary to introduce 
a filter for the acquired data. The authors propose the 
algorithm described in the following, known as 
exponential smoothing. 

3. HUMAN EXPERIMENTAL STUDY 

For this study we have selected adult subjects, patients 
with insulin dependent diabetes mellitus and healthy 
humans. We have patients underwent treatment with rapid 
and semi-lent types of insulin (injections), at different 
times of the day, according to the classic method of 
treatment and clinically supervised. Patients maintain a 
satisfactory or poorly control of the blood glucose 
concentration for a long period of time. Other patients 
have received a proper dosage of insulin from a device 
called “insulin pump”. This offers a continuous basal rate 
of insulin and facilitates the administration of insulin 
bolus related to meals, exercise or other particular states. 
These patients maintain a very good control over the 
blood glucose concentration for a long period of time.  

The blood glucose was recorded for each patient at five 
minute intervals, continuously for three days, using the 
Real-Time Guardian Continuous Glucose Monitoring 
System in unrestrained conditions. Each patient had a 
normal life, with usual meals and activities at work and at 
home. 

The continuous blood glucose records represent for this 
study time-series of the blood glucose concentration. The 
following figures present 3 examples for the blood 
glucose representation of the records over 24 hours 
(Iancu, 2008), (Iancu, 2010). 
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Fig. 1. Time evolution of the glucose concentration for a 
patient P1 with insulin injections. (INS – insulin 
treatment, M – meal). 
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Fig. 2. Time evolution of the glucose concentration for a 
patient P2 with insulin pump.  (INS – insulin treatment, 
M – meal). 
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Fig. 3. Time evolution of the glucose concentration for a 
normal subject. (M – meal). 

4. ARTIFICIAL PANCREAS 

The modern concept on the artificial pancreas has been 
put across in 1983 with the appearance of the first 
commercial variant of the insulin pump. Numerous 
project and studies have had the purpose of designing 
equipment capable of substituting the physiological 
system for the glycaemia control in the human organism. 

Presently, there are two main research directions with the 
artificial pancreas as a main purpose: 

 The insulin pump. 

 The continuous glucose monitoring system 
(CGMS). 

The insulin pump is a small device that is placed outside 
the body or is implanted into the body containing an 
insulin reservoir and a catheter for the introducing of 
insulin into the body. The use of insulin pump 
avoids hypoglycaemic episodes. Hypoglycaemia is a 
severe, acute complication of the insulin treatment at 
insulin dependent patients and influences, through itself, 
any protocol of insulin administration. Moreover, 
hypoglycaemia is a frequent occurrence during sleep, in 
type I diabetes patients and imposes a special algorithm 
for blood glucose control in order to avoid and reduce 



 
 

     

 

nocturnal hypoglycaemic risks. Furthermore, the 
unexpected and irregular oscillations of glycaemia have 
been constantly observed in the blood glucose dynamic at 
diabetes patients. The limits of the insulin pump consisted 
in the medical point of view in possible complications 
(infections, detachments or false readings) and the 
necessity of replacement at relative small periods. From 
the precision point of view, a high dispersion of 
measurements has been seen. For every administration 
way there is an absorption curve specific for insulin, time 
constants and action periods that impose the 
particularisation of the glycaemia control algorithms. 

5. CONTROL OF BLOOD GLUCOSE 

Monitoring systems have revealed rapid changes in 
glycaemia, which requires a sophisticated control 
structure. The generalised structure of the control system 
for blood glucose is shown in the Figure 4.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4. The structure of the predictive system for blood 
glucose control (Iancu, 2010). 
 
 

 

 

 

 

 

 

 

 

 

 

Fig. 5. The structure for the predictive control system. 

The control system for blood glucose must face 
perturbations. 

Using the predictive control theory we can minimize 
deviations of blood glucose from normal levels, while 
penalizing the use of large amounts of infused insulin for 
safety. 

The insulin infusion pump allows a constant and 
predictable delivery rate of insulin into a subcutaneous 
site. The efficiency of the predictive control system is to 
keep the blood glucose levels as close to normal as 
possible. This behaviour is essential for preventing 
diabetes related complications. Ideally this level is 
between 60 and 120 mg/dl before meals and less than 180 
mg/dl two hours after starting a meal. 

The more popular scheme for control processes affected 
by time delay was proposed by O. J. M. Smith (Smith, 
1959). This algorithm requires a minimal knowledge of 
the process to describe it through a transfer function 
(model): 

( ) ( ) τsesGsP −=    (1) 

Unfortunately, the knowing of the mathematical model 
attached to the patient is a difficult problem. Using Smith 
predictors leads to good results in controlling blood 
glucose concentration. These results can be severely 
affected by the errors of estimation of model parameters 
and especially by the incorrect determination of dead 
time. This can lead to instability of control system, with 
serious consequences for the patient's life. 

Given this situation, the authors propose to use an 
algorithm based on exponential smoothing (Fig. 6). In this 
way we can get in real-time feedback information from 
the patient, which can be used by the controller to 
synthesis the commands for the insulin pump. 

The complex and highly non-stationary nature 
(Kovatchev, Clarke et al., 2005), (Zick, Petersen et al., 
2007) of the blood glucose time series, especially in 
diabetic patients and the permanent influence of the 
external perturbations (meal, sleep, exercise, other 
treatments etc.) require a complex series of mathematical 
study methods. 

 

 

 

 

 

 

 

 

 
Fig. 6. The structure of control system with exponential 
smoothing.  
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However, statistical methods have the advantage to be 
accurate and robust, simple enough to be implemented 
with low costs. 

6. EXPONENTIAL SMOOTHING METHOD 

Single exponential smoothing is used for smoothing 
discrete time series. The efficiency of this algorithm can 
be attributed to its simplicity and to the capacity to adjust 
its responsiveness to changes in the process and its 
reasonable accuracy. 

Let be an observed time series { }nxxxX ...21= . 
Formally, the simple exponential smoothing equation 
takes the form (Ostertagová, 2011): 

 iii xxx ~)1(~
1 αα −+=+    (2) 

where ix  is the actual, known series value at moment 
time i, ix~  is the forecast value of the variable X at time i, 

1
~

+ix  is the forecast value at time i+1 and α is the 
smoothing constant.  

Smoothing constant α  is a selected number between zero 
and one, 0 <α <1 (Brown, Meyer, 1961). When α =1, the 
original and smoothed version of the series are identical. 
At the other extreme, when α = 0, the series is smoothed 
flat (Ostertagová, 2011). In the literature it is demonstrate 
the next relation (Brown, Meyer, 1961): 
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In scientific papers are presented also double exponential 
smoothing and triple exponential smoothing. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From (2) we obtain: 

 iiiiii xxxxx αεα +=−+=+
~)~(~~

1   (4) 

where iε  represent the forecast error at time i.  

Using this error it is possible to define the following 
parameters (Ostertagová, 2011): 

 Mean square error - MSE 

∑
=

=
n

i
ie

n
MSE

1

21     (5) 

 Root mean square error - RMSE 

MSERMSE =     (6) 

The objective is to find an appropriate smoothing constant 
so that MSE and RMSE to be minimum.  

7. APPLICATION OF EXPONENTIAL SMOOTHING 
    METHOD FOR BLOOD GLUCOSE ESTIMATION 

The authors applied the method single exponential 
smoothing to the time series obtaining from CGMS for 
each patients represented in Fig. 1-3. The sensors measure 
the blood glucose concentration at 5 minute intervals, 
over 24 hours. So, we have 288 values distributed in a 
time series for each patient. For the time series presented 
in Fig. 1, 2 and 3, we have been calculated the mean and 
the standard deviation (Table 1). Also, using statistical 
prediction, it was possible to calculate the confidence 
intervals for 95% and 99% of blood glucose values. The 
following figures present 3 examples for the application 
of the single exponential smoothing for blood glucose 
records over 24 hours 
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Fig. 7. The result of single exponential smoothing for a record from P1 patient, with insulin injections. 



 
 

     

 

Table 1. Statistic parameters 

Statistic 
parameters 

Patient P1 
(injections) 

Patient P2 
(pump) 

Healthy 
subject 

Mean of blood glucose 
values  -  μ (mg/dl)   199.31   101.28     86.56 

Standard deviation - σ     81.02     17.29       6.14 

Minimum   189.91     99.27     85.85 Confidence 
interval for 
95% Maximum   208.71   103.28     87.27 

Minimum   186.93     98.63     85.62 Confidence 
interval for 
99% Maximum   211.69   103.92     87.50 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

8. CONCLUSIONS 

Clinical studies have shown a high correlation between 
glucose variability and chronic complications of diabetes. 
Glycaemia variability has also indicated, along the 
studies, unsatisfactory treatment and management of the 
disease.  

In medical practice, the mean glucose was accepted as the 
only significant and relevant measure of glycaemia 
variability. Despite these, predictive control of the closed 
loop control system, based on a mathematical model, is 
difficult to accomplish because these oscillations have an 
unknown and unpredictable source. 
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Fig. 8. The result of single exponential smoothing for a record from P2 patient, with insulin pump. 
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Fig. 9. The result of single exponential smoothing for a record from the healthy subject. 



 
 

     

 

It can be seen the efficiency of this algorithm. The single 
exponential smoothing for blood glucose records can be 
used in predictive control because it offers in real time the 
forecast values, it is easy to use and affordable, it has the 
capacity to adjust its responsiveness to changes in the 
process and has reasonable accuracy. 
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