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Abstract: In this paper the authors present a software program to simulate hexapod robot stability 
in gravitational field for a certain configuration of legs and some basic walking simulations using 
Matlab software package. First the complete kinematical model of the leg is calculated and the 
direct dynamical model is presented. The kinematical model of the leg was obtained using Denavit 
– Hartenberg algorithm. A workspace analysis of the leg is made in order to analyze collision 
during walking and impose the necessary constrains. Then a hexapod robot structure using this 
kind of leg is presented and simulated using Matlab software package. A virtual simulation 
platform was created for the robot in order to simulate robot static stability and basic movement 
algorithm. The analysis of the robot static stability is made for different cases of locomotion on 
horizontal surface and for different leg configuration. Also the simulation platform allows 
connection of a physical leg to the computer through Arduino Duemilanove development board in 
order to simulate different movement algorithms and test the functionality of the structure. This 
part is an experimental one and will be improve in the future. Moving the leg tip from one point to 
another is made in two phases: stance phase and swing phase. The paper includes some 
experimental results related to the static gravitational stability depending on the support polygon, 
single leg control and some basic walking simulations.   
Keywords: Matlab, gravitational stability, Denavit-Hartenberg representation, model, hexapod. 

 

1. INTRODUCTION 

The nature invented the leg and humans invented the 
wheel. In nature, most arthropods have six legs to easily 
maintain static stability, and it has been observed that a 
larger number of legs do not increase walking speed. 
Moreover, hexapod robots show robustness in case of leg 
faults. For these reasons, hexapod robots have attracted 
considerable attention in recent decades (Bensalem et. al. 
2009). 

Most of the earth’s surface is inaccessible to regular 
vehicles. Today’s robots are mostly designed for traveling 
over relatively smooth, leveled or inclined surfaces.  

The terrain in question is either outdoor environments, 
that is generally considered difficult for mobile robots, or 
indoor environments like staircases, doorsteps or tight 
corners can cause difficulties. 

An important drawback of legged machines is the 
complexity of the control required to achieve walking 
even on completely flat and horizontal surface in which 
much simpler wheeled machines work perfectly well 
(Carbone 2005). The difficulty is not moving the 
individual legs, but in coordination of the movement of 
the legs and the body. The legged robot control system 
must generate a sequence of leg and body motions, a gait, 
which will propel it along desired trajectory.  

 Gait generation is the formulation and selection of a 
sequence of coordinated leg and body motions that propel 
the robot along the desired path. 

The most studied problem for multi-legged robots 
concerns how to determine the best sequence for lifting 
off and placing the feet. Hexapod gaits have been widely 
studied as a function of robot characteristics. 

The large diversity of the existing walking animals offers 
innumerable examples of the possibilities of this type of 
locomotion. 

The gait analysis and selection requires an appreciable 
modeling effort for the improvement of mobility with legs 
in structure/unstructured environments. Nowadays studies 
are focused primarily on using artificial neural networks, 
fuzzy logic or central pattern generators for both leg 
coordination and leg control.  

It is well known that to maintain a structure’s position in a 
three dimensional space requires three point of support. 
Machines with three or more legs continuously in contact 
with the ground are said to be statically balanced if they 
maintain their projection of the centre of gravity within 
the polygon determined by the legs on the support plane. 
The polygon is known as “the support polygon” (Fig. 1). 
One of the most studied problem for multilegged robots 
concerns the stability analyze during lifting off and 
placing the legs. The motion of legged robots can be 
divided into statically and dynamically stable. Static sta



 
 

     

 

bility means that the robot is stable at all times during its 
gait cycle. Dynamic stability means that the robot is only 
stable when it is moving. For legged robots, static 
stability demands that the robot has at least three legs on 
the ground at all times and the robot’s centre of mass is 
inside the support polygon, i.e. the convex polygon 
formed by the feet supporting the robot (Fig. 1).  

On the left side four legs provide support and the centre 
of mass is located inside the support polygon so the robot 
is statically stable. On the middle the bottom left leg has 
been lifted, putting the centre of mass outside the support 
polygon which made the robot unstable. On the right side 
three legs provide support and the centre of mass is 
located on one side of the support polygon. This case is 
called critical stability.  

Fig. 1. Stability cases for a hexapod robot: stable, unstable 
critically.  

Arduino Duemilanove is a development board equipped 
with an AVR ATMEGA328 microcontroller. Today all 
the microcontrollers are made with CMOS technology 
because of the large density of integration at a lower cost 

AVR uses Harvard architecture, with separate memories 
and buses for program and data. 

Some advantages of using Arduino Duemilanove are: 
-easy to program. Programming environment is easy-

to-use for both beginners and advanced programmers 
-open source. Lots of code libraries are available for 

free for a wide range of external components (sensors, 
actuator, LCD). 

2. ROBOTIC LEG MODEL 

The successful design of a legged robot depends mostly 
on the design of the chosen leg. Since all aspects of 
walking are ultimately governed by the physical 
limitations of the leg, it is important to select a leg that 
will allow a maximum range of motion and that will not 
impose unnecessary constraints on the walking.  

2.1 Direct Kinematics 

A three-revolute kinematical chain has been chosen for 
each leg mechanism in order to mimic the leg structure 
(Fig. 2). A direct geometrical model for each leg 
mechanism is formulated between the moving frame 
Oi(xi,yi,zi) of the leg base, where i=1…3, and the fixed  
frame OG(XG,YG,ZG).  

The coordinate frames for the robot legs are assigned as in 
fig. 2. The assignment of link frames follows the Denavit- 
Hartenberg direct geometrical modeling algorithm. 

 

Fig. 2. Model and coordinates frame for leg kinematics. 

The robot leg frame starts with link 0 which is the point 
on the robot where the leg is attached; link 1 is the coxa, 
link 2 is the femur and link 3 is the tibia. Legs are 
distributed symmetrically about an axis in the direction of 
motion (Y in this case). The general form for the 
transformation matrix from link i to link i-1 using Denavit 
Hartenberg parameters [Schilling 1990] is given in (1): 
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The transformation matrix is a series of transformations: 
 1. Translate di along zi-1 axis, 
 2. Rotate θi about zi-1 axis, 
 3. Translate ai along xi-1 axis, 
 4. Rotate αi about xi-1 axis. 
The overall transformation is obtained as a product 
between three transformation matrixes: 

base femur tibia base
coxa coxa femur tibiaT T T T=  (2) 

Considering fig. 2 and using (2) the coordinates of the leg 
tip are: 
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where: 
d1 is the distance from the ground to coxa joint. 
Li are the lengths of the leg links. 

The centre of mass of each link is positioned relative to 
the link frame by a position vector pi= [xi, yi, zi, 1] T. To 
find the position of the centre of mass of each link relative 
to leg frame, the coordinates pi are multiplied with the D-
H transformation giving the centre of mass positions: 
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The position of centre of mass of the leg is calculated 
using the following equations: 
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where mli  is the mass of link i. 

2.2 Inverse Kinematics 

The geometrical model described above establishes a 
connection between the joint variable and the position and 
orientation of the end frame. The inverse kinematics 
problem consists of determining the joint angles from a 
given position and orientation of the end frame. The 
solution of this problem is important in order to transform 
the motion assigned to the end frame into the joint angle 
motions corresponding to the desired end frame motion. 

The goal is to find the three joint variables θ1, θ2, and θ3 
corresponding to the desired end frame position. The end 
frames orientation is not an issue, since we are only 
interested in its position. 

 

Fig. 3. Illustrations for solving inverse kinematics.  

Using (3) and considering the following constraints: all 
joints allow rotation only about one axis, femur and tibia 
always rotate on parallel axes, and the physical limitation 
of each joint we can determine the joint angle. 

The coxa joint angle can be found using atan2(y,x) 
function as can be seen from fig.3.A. 

1 tan 2( , )l la y xθ =  (6) 

In order to determine the other two angles a geometrical 
approach was considered.  

To further simplify the approach the leg tip coordinates 
were transformed to coxa frame using the transformation 
matrix below: 
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The angle φ2 which is the angle relating to the femur 
servo position, can be derived directly from the triangle 
(fig. 3.B): 

2 2θ ϕ=  (8) 

The angle φ1 is the angle between the x-axis and line a 
and can be calculated with atan2 function: 

1 3 3tan 2( , )a y xϕ =  (9) 

where x3 and y3 are the leg tip coordinates in coxa frame. 

If we consider φt to be the entire femur span and apply the 
law of cosines results: 
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where: 
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Next the femur angle can be found from: 
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Again, applying the law of cosines we find the φ3 angle: 
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Considering fig. 3B we see that θ3 can be found as 
follows: 

3 3θ π ϕ= −  (14) 

2.3 Dynamic Model 

The purpose of robot dynamics is to determine the 
generalized forces required to not only overcome the self-
inertial loads (due to the weight of the links inside the 
robot) but also to produce the desired input motions to the 
robot’s mechanism (Fahimi 2008). 

In order to obtain a more precise model we divided the 
mass of each link in two (Mi- servomotor mass, mi-link 
mass, Mi > mi) (Fig. 4). 

Considering the generalized coordinates vector q= [q1, q2, 
q3]T the generalized vector forces can be computed using 
the below equation: 
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Considering that all three servomotors have the same 
mass M1=M2=M3=M and the last two links have the same 
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Fig. 4. Illustrations for developing dynamic model of the 
leg. 

mass m2=m3=m2 but different lengths the expressions for 
generalized forces are: 
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where: 

iI ′ -are the moments of inertia associated with the 
servomotors; 

iI ′′ -are the moments of inertia associated with the links; 

ir  -radius of instantaneous circle of rotation of the centre 
of mass associated with the link i of the leg, i=2...4; 

3R  -radius of instantaneous circle of rotation of the 
servomotor 3. 

3. WORKSPACE ANALYSIS of the LEG 

There are several things that are important when defining 
the leg workspace. A basic one is that the workspace 
should not be larger than the reach of the leg. Workspace 
must be define in order to maximize motion but in the 
same time to minimize singularities or any other pitfalls 
(Maki 2007). 

Workspace is also useful for walking algorithm to prevent 
collision of adjacent legs by imposing restrictions for 
direct or inverse kinematics.  

The actuators used on the legs are capable of rotating 180 
degrees. In order to minimize leg collisions the coxa angle 
was limited between –π/4 and π/4. This restriction was 

introduced due to mechanical construction of the leg. To 
get the most out of motion the operation space of variable 
θ2 was set from -π/2 to π/4 and θ3 from 0 to 3*π/4. In our 
case there is a singularity when the x and y coordinates of 
the leg tip are zero. In this configuration the value for θ1 is 
arbitrary. To avoid this scenario we can define the x 
coordinate greater than zero. 

Physical limitations due to mechanical construction for 
each joint angle are: 

qcoxa  =[-π/4,π/4], 
qfemur=[-π/4,π/2], 
qtibia   =[0,3*π/4]. 

The defined workspace with the above limitation is 
presented in fig. 5, 6 and 7. 

 

Fig. 5. Leg workspace (XY view). 

 

Fig. 6. Leg workspace (XZ view). 
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Fig. 7. Leg workspace (YZ view). 

The leg workspace with the important point is presented 
in fig. 8 and synthesized in table 1. 

 

Fig. 8. Leg workspace. Extreme interest points. 

Tabel 1. Leg workspace 
Coordinates Min Max 
X -7 47,2 

Y -9,6 39,6 
Z -22,2 49,8 

Valid for l1=5, l2=25.2, l3=17 and for coxa joint coordinates (0, 15, 20)  

4. Hexapod Robot Model 

The legged locomotion on natural terrain presents a set of 
complex problems (foot placement, obstacle avoidance, 
load distribution, general stability) (Krzysztof et al 2008) 
that must be taken into account both in mechanical 
construction of vehicles and in development of control 
strategies. One way to handle these issues is using models 
that mathematically describe the different situations. 
Therefore modeling becomes a useful tool in 
understanding systems complexity and for testing and 
simulating different control approaches (Barreto et al, 
Fahimi 2008).  

The robot structure considered has 6 identical legs and 
each leg has 3 degree of freedom (RRR) (Fig. 9). All the 
relevant points have been put on the model as can be seen 
from fig. 9: coordinates of the centre of mass of each leg 
Gi, i=1...6; leg numbering for easy understanding (1 to 6), 
coordinates of the centre of mass of the robot G, 
projection of the centre of mass into the support polygon 
G’, robot’s centre of symmetry with the attached frame 
OR(XR,YR,ZR), the global frame Ow(Xw,Yw,Zw). 

The global frame is the frame that all other frames will be 
defined relative to. The global frame is rigidly attached to 
the lower left corner of the world so that the z-axis is 
vertical and the xy-plane is aligned with the floor surface.  

The origin of the robot coordinates is attached in the 
centre of symmetry with the z-axis pointing up, the x-axis 
pointing left and the y-axis pointing forward. 

 

Fig. 9. Hexapod robot structure 

The overall transformation from global frame to each leg 
tip is obtained as follows: 

i
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where: 
W
RT is the transformation matrix between the global frame 

and the robot frame and defines the rotation about y,x,z 
(roll, pitch, yaw matrix).  

i

R
coxaT is the transformation matrix from the robot centre to 

each leg. 
The position of robot’s centre of mass is calculated using 
the following equations: 
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Fig. 10.  Hexapod robot control interface. 

5. SIMULATION PLATFORM 

The main purpose of this simulation platform is to show 
how the support polygon modifies when legs lose contact 
with ground and if the projection of the centre of mass is 
within the support polygon. 

The simulation program was made using MatLab GUIDE 
(Brian et al 2001). 

The developed software platform can be used to analyze 
what happens with the hexapod robot in gravitational field 
and it also allows communication with the leg in real 
world. 

The analysis of the hexapod robot in gravitational field 
can be group in two modes:  
  - free fall mode. In this mode the mechanical confi-
guration of the legs is defined by their joints values, no 
additional move is allowed. 
  - transitory analysis. This mode is used to analysis what 
happens with the robot between two static regimes. 

The communication between the physical leg and Matlab 
environment is made using Arduino Duemilanove 
development board. 

Giving a set of values for legs joints yields a stationary 
mechanical configuration which generates a certain 
support polygon in relation with which we analyze the 
gravitational stability of the hexapod robot.  

For a certain configuration of legs, the robot is statically 
stable if the projection of the centre of mass is inside the 
support polygon; it is at stability limit if the projection of 

the centre of mass is on one side of the support polygon 
and it is statically unstable if the projection of the centre 
of mass is outside the support polygon. In this last case 
the robot is shifting gradually its support polygon by 
lifting/touching the ground with its legs, due to gravity, 
until the condition for static stability is accomplished. 

The shape of the support polygon needed for minimum 
static stability is the triangle. 

5.1 Program Interface 

When the interface is launched the robot is first drawn in 
a stable configuration as shown in fig. 10. The interface is 
divided basically into 2 areas: in the upper left the robot is 
displayed (plotted) according to the values set by the user 
and in the upper right and bottom we can find the controls 
for the robot. The controls for the robot are structured 
mainly in 3 parts: joints control, position control, walking 
control. Joints control and position control consists of a 
list where the leg number it put on and a panel where the 
user can set the values for each joint or position (using 
direct and inverse kinematics). Walking control consist of 
choosing the terrain on which the robot will move. The 
terrain can be choosing using the immediate (controls) 
checkboxes.  

The controls for each leg are encapsulated into a panel 
identified by leg number. Every slider has an editable 
textbox where the value is displayed and controls a 
certain link of the robot. If we use a slider the associated 
editable textbox value is updated and vice versa. Also the 
robot leg position is updated with the data from the slider 



 
 

     

 

or from the textbox. The controls for link length or mass 
affect all the legs because they are considered identical. 

The button label Leg Control from fig. 10 launches a 
second interface like in fig. 11. The second interface 
allows both hardware and simulated control for a single 
leg. This interface can be used both in offline mode or 
online mode.  

 

Fig. 11.  Leg control using Arduino Duemilanove 

The graphical representation of the robot also allows 
seeing the shape of the support polygon which is updated 
according to the legs on the ground.  The support polygon 
is drawn only if the distance from the tip of the leg to the 
ground is smaller than a threshold. This threshold is 
modifiable (but not present in the interface) and was 
introduced as a way to compensate certain position errors 
that may occur due to real servomotors.  

The simulation program shows all the stages the robot 
goes through for a better understanding. For simplicity 
and better understanding of the robot stages the model is 
drawn in a simpler way. 

5.2. Simulation Algorithm  

The authors have elaborated an algorithm in order to 
achieve the goal of analyzing the static stability of a 
hexapod robot in gravitational field. The algorithm is 
structured in 5 steps as following: 
 - setting the joints values 
 - determine the mechanical configuration 
 - determine which legs are on the ground 
 - evaluation of the static stability condition 
 - while (condition of static stability = false) 
         - determine the rotation line using the minimum 
            distance from G’ to support polygon’s sides 
         - rotate the robot about the line found 
         - determine which legs are on the ground 
         - evaluation of the static stability condition  

The determination of static stability condition is resumed 
at finding if the projection of robot’s centre of mass is 
inside the support polygon. For this the authors used the 
following algorithm: 

 - determine the convex polygon 
 - determine the area of the convex polygon (A) 
 - form the n triangle using 2 consecutive sides of the 
support polygon and the projection of centre of mass, G’, 
(e.g. ABG’, BCG’… etc.) 
 - determine the areas of the n triangles formed (Ai) 
 - if (ΣAi = A) then condition=true 
         - else condition=false 

5.3 Hardware Leg Control 

The system proposed by the authors (Fig. 12) is similar 
with the system xPC-Target component of Matlab. The 
software that make possible the communication between 
Arduino board and Matlab has been released with the last 
version of Matlab. Mathworks has also developed support 
for Arduino in Simulink. A part of the communication 
software is uploaded on the Arduino board and plays the 
server role.  

There are two programs that can be uploaded on the 
board: 
 - adiosrv.pde with which all the input and output of the 
board can be manipulated. 
 - motorsrv.pde designed exclusively for motor control via 
a motor shield.  

The major drawback of using the original motorsrv.pde 
was that this file was developed as support for a specific 
motor shield that can only control 2 servomotors. So we 
modify the file in a way that now allows using all 6 PWM 
channels available. 

USB
Matlab

Arduino 
 
 AtMega328

P 
W
M Leg 

 

Fig. 12. Leg control system 

The other part is a Matlab class (arduino.m) and plays the 
role of the client. Once the class is instantiated it makes 
possible sending commands over USB port. 

The direction of motion of the servo is automatically 
determined. If we set a rotation with 900 and then a 300 
rotation the servo will rotate 600 anticlockwise. 

5.4 Walking Algorithm 

During walking or running the leg move cyclically and in 
order to facilitate analysis or control, the motion of the leg 
is often partitioned in two parts: 
 - support phase or stance, when the robot uses the leg to 
support and propel. 
 - transfer phase or swing, when the leg is moved from 
one foothold to the next. 



 
 

     

 

The stance part of the walking algorithm is supposed to 
move the leg in a straight line. The swing part of the 
algorithm must lift the leg off the ground, move it back to 
the starting position and lower it down to the ground 
again. The walking algorithm is based on the kinematical 
model of the leg.  

Leg joints  

Step length Leg lift Speed 

Parameters  

Walking control 

Stance  Swing 

Algorithm 

 
Fig. 13. Walking algorithm diagram 

Parameters introduce in the algorithm (Fig. 13) are: 
 - speed; define the speed of the leg tip, 
 - step length; define the length of the step, 
 - leg lift; this defines how high the leg is lifted when it’s 
in the swing-cycle. 

For a smooth straight motion, the swing time must be 
equal to the stance time for each leg. 

In the stance part of a step, the leg only moves in a 
straight line. At time t from the start of the step, the 
coordinates (x, y, z) for the trajectory will be: 

x=

y= *
2

leglength
steplength t speed

z legheight

−

= −

 
(21) 

In the swing part of the step, the leg first has to be lifted 
of the ground, and then moved back to where the next 
step is supposed to start and then lowered to the ground. 
To find out where in the swing-cycle the leg is at time t 
from the start of the cycle we first have to calculate the 
total length the leg has to travel: 

(2 * ) *
_

leg lift step length td ist
sw ing cyc le

−
=  (22) 

One step consists of one stance cycle and one swing cycle 
but to maintain a smooth motion of the leg, it’s important 
that the swing cycle continues where the stance cycle 
ended, and that the swing cycle ends where the new 
stance cycle starts. This does not only hold for the 
position, but also for the speed and the direction of the 
speed. 

6. EXPERIMENTAL RESULTS 

6.1 Free fall analysis 

The free fall analysis represents what happens with the 
robot left to fall on the ground from a height greater than 
the extension of the legs. Keeping in mind that the joints 
are locked by the values prescribed by the user, no extra 
movements are allowed (no active stability). The only 

force that acts upon the robot is the gravitational force. 
For a given set of joint values the robot passes through 
many transitory stages until it becomes statically stable 
(Fig. 14. a, b, and c). Legs that have contact with the 
ground determine the shape of the support polygon 
(triangle, quadrilateral, pentagon or hexagon). In order to 
know if the robot achieves static stability the projection of 
G (G’) must be inside the support polygon. To solve this 
problem the above algorithm is applied. 

 

Fig. 14.a: Phase one of falling. 

In fig. 14.b it can be seen that even in this configuration 
G’ is not inside the support polygon and the robot 
continues it’s falling and rotates about the line determined 
by leg 2 and leg 5 until the first leg touches the ground, 
which in this case, is leg 3.  

 

Fig. 14.b: Phase two of falling. 

In fig. 14.c a new configuration is formed and if the 
algorithm described above it is applied, point G’ is inside 
the support polygon and the robot becomes statically 
stable and the falling stops. 

 

Fig. 14.c: Phase three – statically stable. 

6.2 Transitory Analysis 

In this mode of analysis the robot passes between two 
static regimes. A static regime is identified by the 
condition of stability. The user can alter a static regime 
using the controls for joint values or position of the leg 
tip. This analysis can also be interpreted as a continuation 



 
 

     

 

of free fall analysis case if the condition of stability has 
been met.  

In fig 15.a the robot has static stability, the support 
polygon described by the legs on the ground is a 
quadrilateral (formed by legs 1, 2, 5 and 6) and the 
projection of the centre of mass is inside the support 
polygon.  

 

Fig. 15.a: Phase one – statically stable. 

Next, lifting leg 2 the support polygon changes its shape 
becoming a triangle. Using the algorithm described 
above, the projection of G is not inside the support 
polygon and the robot becomes statically unstable and 
starts falling (Fig. 15.b). 

 

Fig. 15.b: Phase two: falling 

Following the algorithm the next leg closest to the ground 
is leg number 4. In fig. 15.c the projection of G is inside 
the newly support polygon, the robot stops falling and 
becomes statically stable. 

 

Fig. 15.c: Phase three – statically stable 

6.3. Hardware Leg Control 

The algorithm for controlling the leg joints, including 
direct kinematics and inverse kinematics, was 
implemented in Matlab in order to analyze leg 
performance.   

The results of the tests can be view in the chart below. 

 

Fig. 16. Hardware leg control results. 

The main errors occurred due to the fact that we can only 
send integer numbers for joint values. 

Other errors occurred due to the fact that the joint are 
assembled using bolts and nuts. Normal usage of the 
robot causes the nuts and bolts to loosen causing a lot of 
clearance in the joints.  

6.4 Inclined Plane Walking Approach 

The movement on inclined plane is realized by moving 
one leg from one side at the time as can be seen from fig. 
17, 18 and 19. As impose restrictions for the robot we can 
enumerate the following: the robot body must be leveled 
with respect to the ground, coxa angle is set for π/4. The 
angle for the plane is 100. 

 

Fig. 17. Moving leg 1 

 

Fig. 18. Moving leg 3. 



 
 

     

 

 

Fig. 19. Moving leg 5. 

Once all the legs from one side have been moved to a new 
position the robot body will be dragged using all the coxa 
joints so that the robot can move forward (Fig. 20).  

 

Fig. 20. Robot body drag. 

After the body has been dragged to the new position the 
legs 2, 4 and 6 from the other side must be moved 
forward (Fig. 21, 22 and 23). 

 
Fig. 21. Moving leg 2. 

 
Fig. 22. Moving leg 4. 

 
Fig. 23. Moving leg 6. 

After this cycle of movement the body is dragged forward 
again and the algorithm resumes. Finally the robot with 
all the legs are on the inclined plane with its body leveled 
as can be seen from fig. 24.  

  

Fig. 24. Final position of the robot on the inclined plane. 

Also it can be seen the trajectory of the robot on the 
inclined plane. 

 

Fig. 25. Trajectory of the robot during walking 

6.5 Stair Step Walking Approach 

As with the previous case of movement, this case respects 
the algorithm describe in the previous chapter. The 
movement on stair step is realized by moving one leg 
from one side at the time as can be seen from fig. 26, 27 
and 28. As impose restrictions for the robot we can 
enumerate the following: the robot body must be leveled 
with respect to the ground, coxa angle is set for π/4. The 
height of the stair step is 1/3 of the height of the robot. 

 

Fig. 26. Moving leg 1. 



 
 

     

 

 

Fig. 27. Moving the leg 3. 

 

Fig. 28. Moving the leg 5. 

Once all the legs from one side have been moved to a new 
position the robot body will be dragged using all the coxa 
joints so that the robot can move forward (Fig. 29). 

 

Fig. 29. Robot body drag 

After the body has been dragged to the new position the 
legs 2, 4 and 6 from the other side must be moved 
forward (Fig. 30, 31 and 32). 

 

Fig. 30. Moving leg 2. 

 

Fig. 31. Moving leg 4. 

 

Fig. 32. Moving leg 6. 

After this cycle of movement the body is dragged forward 
again and the algorithm resumes. Finally the robot with 
all the legs are on the stair step with its body leveled as 
can be seen from fig 33. 

 

Fig. 33. Final position of the robot. 

Also it can be seen the trajectory of the robot on during 
walking. 

 

Fig. 34. Trajectory of the robot during walking 



 
 

     

 

7. CONCLUSION  

In this paper a simulation platform for legged mobile 
robots was presented, that allows stability analysis and 
full control of the robot. 

Free fall analysis is useful for investigating what happens 
with the robot on uneven terrain or for accidents that may 
happen due to lose of contact, slippery surface, 
servomotor failure, power supply failure. 

Transitory analysis represents a more important case for 
locomotion, gait generation. When starting to develop a 
gait cycle we can have a big picture of what happens 
when the robot starts to move, how the support polygon 
changes and what actions (what leg should be actuated) 
must be applied to the robot in order to meet condition of 
stability. 

The interface will be imbuing with additional walking 
algorithms and controls. 

The interface was designed to be simple and intuitive and 
to offer the user a simple and efficient way to control 
every aspects of the robot (angles, masses, lengths, leg 
control). 

The two analyses made in this article represent the bases 
for next activities on static stability.   

Hardware leg control will be imbuing to better precision. 

In the future the program will be upgraded permitting 
additional controls and functions for stability analysis 
(including dynamic stability) on uneven ground and 
implementing collision detection algorithms. Also the 
results of these studies represent the bases for different 
strategies of locomotion on different terrains. The 
experimental results will become a standard for a real 
hexapod robot.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ACKNOWLEDGMENT 

    This work was partially supported by strategic grant 
POSDRU/88/1.5/S/50783, Project ID 50783 (2009), co-
financed by the European Social Fund – Investing in 
People, within the Sectoral Operational Programme 
Human Resource Development 2007 – 2013. 

REFERENCES 

Barreto J., Trigo A. ,Menezes P., Dias J.,  Kinematic and        
dynamic modeling of a six legged robot. 

Bensalem, S.,Gallien, M., Ingrand, F., Kahloul, I., 
Nguyen Thanh-Hung (2009), Designing autonomous 
robots, IEEE Robotics & Automation Magazine, Vol. 
16, March 

Brian R., Hunt R., Lipsman L., Rosenberg J. M.,(2001), A       
guide to MATLAB for beginners and experienced 
users, ISBN-I3:978-0-521-00859-4, Cambridge 
University Press 

Carbone G., Ceccarelli M., (2005), Legged robotic 
systems, Cutting Edge Robotics, ARS Scientific 
Book, pp. 553-576, Wien. 

Fahimi, F. (2008), Autonomous robots: modeling, path 
planning, and control, Springer. 

Krzysztof W., Dominik B., Andrzej K.,(2008) Control  
and environment sensing system for a six-legged 
robot, Journal of Automation, Mobile Robotics & 
Intelligent Systems, Volume 2 No3. 

Maki K. H.(2007)  Bioinspiration and Robotics:Walking 
and Climbing Robots, ISBN 978-3-902613-15-8, I-
Tech Education and Publishing, Croatia 

Schilling R. J. (1990) , “Fundamentals of robotics: 
analysis and control”, ISBN: 0-13-344433-3, 
Prentice Hall, New Jersey, USA. 

http://www.atmel.com/dyn/resources/prod_documents/82
71S.pdf 
www.mathworks.com 
 


