

Basic Walking Simulations and Gravitational Stability Analysis
for a Hexapod Robot Using Matlab

Sorin Mănoiu-Olaru*, Mircea Niţulescu **

*Department of Automation, Electronics and Mechatronics, University of Craiova, Romania

(e-mail:manoiusorin2006@yahoo.com)
** Department of Automation, Electronics and Mechatronics, University of Craiova, Romania

(e-mail:nitulescu@robotics.ucv.ro)

Abstract: In this paper the authors present a software program to simulate hexapod robot stability
in gravitational field for a certain configuration of legs and some basic walking simulations using
Matlab software package. First the complete kinematical model of the leg is calculated and the
direct dynamical model is presented. The kinematical model of the leg was obtained using Denavit
– Hartenberg algorithm. A workspace analysis of the leg is made in order to analyze collision
during walking and impose the necessary constrains. Then a hexapod robot structure using this
kind of leg is presented and simulated using Matlab software package. A virtual simulation
platform was created for the robot in order to simulate robot static stability and basic movement
algorithm. The analysis of the robot static stability is made for different cases of locomotion on
horizontal surface and for different leg configuration. Also the simulation platform allows
connection of a physical leg to the computer through Arduino Duemilanove development board in
order to simulate different movement algorithms and test the functionality of the structure. This
part is an experimental one and will be improve in the future. Moving the leg tip from one point to
another is made in two phases: stance phase and swing phase. The paper includes some
experimental results related to the static gravitational stability depending on the support polygon,
single leg control and some basic walking simulations.
Keywords: Matlab, gravitational stability, Denavit-Hartenberg representation, model, hexapod.

1. INTRODUCTION

The nature invented the leg and humans invented the
wheel. In nature, most arthropods have six legs to easily
maintain static stability, and it has been observed that a
larger number of legs do not increase walking speed.
Moreover, hexapod robots show robustness in case of leg
faults. For these reasons, hexapod robots have attracted
considerable attention in recent decades (Bensalem et. al.
2009).

Most of the earth’s surface is inaccessible to regular
vehicles. Today’s robots are mostly designed for traveling
over relatively smooth, leveled or inclined surfaces.

The terrain in question is either outdoor environments,
that is generally considered difficult for mobile robots, or
indoor environments like staircases, doorsteps or tight
corners can cause difficulties.

An important drawback of legged machines is the
complexity of the control required to achieve walking
even on completely flat and horizontal surface in which
much simpler wheeled machines work perfectly well
(Carbone 2005). The difficulty is not moving the
individual legs, but in coordination of the movement of
the legs and the body. The legged robot control system
must generate a sequence of leg and body motions, a gait,
which will propel it along desired trajectory.

 Gait generation is the formulation and selection of a
sequence of coordinated leg and body motions that propel
the robot along the desired path.

The most studied problem for multi-legged robots
concerns how to determine the best sequence for lifting
off and placing the feet. Hexapod gaits have been widely
studied as a function of robot characteristics.

The large diversity of the existing walking animals offers
innumerable examples of the possibilities of this type of
locomotion.

The gait analysis and selection requires an appreciable
modeling effort for the improvement of mobility with legs
in structure/unstructured environments. Nowadays studies
are focused primarily on using artificial neural networks,
fuzzy logic or central pattern generators for both leg
coordination and leg control.

It is well known that to maintain a structure’s position in a
three dimensional space requires three point of support.
Machines with three or more legs continuously in contact
with the ground are said to be statically balanced if they
maintain their projection of the centre of gravity within
the polygon determined by the legs on the support plane.
The polygon is known as “the support polygon” (Fig. 1).
One of the most studied problem for multilegged robots
concerns the stability analyze during lifting off and
placing the legs. The motion of legged robots can be
divided into statically and dynamically stable. Static sta

bility means that the robot is stable at all times during its
gait cycle. Dynamic stability means that the robot is only
stable when it is moving. For legged robots, static
stability demands that the robot has at least three legs on
the ground at all times and the robot’s centre of mass is
inside the support polygon, i.e. the convex polygon
formed by the feet supporting the robot (Fig. 1).

On the left side four legs provide support and the centre
of mass is located inside the support polygon so the robot
is statically stable. On the middle the bottom left leg has
been lifted, putting the centre of mass outside the support
polygon which made the robot unstable. On the right side
three legs provide support and the centre of mass is
located on one side of the support polygon. This case is
called critical stability.

Fig. 1. Stability cases for a hexapod robot: stable, unstable
critically.

Arduino Duemilanove is a development board equipped
with an AVR ATMEGA328 microcontroller. Today all
the microcontrollers are made with CMOS technology
because of the large density of integration at a lower cost

AVR uses Harvard architecture, with separate memories
and buses for program and data.

Some advantages of using Arduino Duemilanove are:
-easy to program. Programming environment is easy-

to-use for both beginners and advanced programmers
-open source. Lots of code libraries are available for

free for a wide range of external components (sensors,
actuator, LCD).

2. ROBOTIC LEG MODEL

The successful design of a legged robot depends mostly
on the design of the chosen leg. Since all aspects of
walking are ultimately governed by the physical
limitations of the leg, it is important to select a leg that
will allow a maximum range of motion and that will not
impose unnecessary constraints on the walking.

2.1 Direct Kinematics

A three-revolute kinematical chain has been chosen for
each leg mechanism in order to mimic the leg structure
(Fig. 2). A direct geometrical model for each leg
mechanism is formulated between the moving frame
Oi(xi,yi,zi) of the leg base, where i=1…3, and the fixed
frame OG(XG,YG,ZG).

The coordinate frames for the robot legs are assigned as in
fig. 2. The assignment of link frames follows the Denavit-
Hartenberg direct geometrical modeling algorithm.

Fig. 2. Model and coordinates frame for leg kinematics.

The robot leg frame starts with link 0 which is the point
on the robot where the leg is attached; link 1 is the coxa,
link 2 is the femur and link 3 is the tibia. Legs are
distributed symmetrically about an axis in the direction of
motion (Y in this case). The general form for the
transformation matrix from link i to link i-1 using Denavit
Hartenberg parameters [Schilling 1990] is given in (1):

1

cos sin cos sin sin cos
sin cos cos cos sin sin

0 sin cos
0 0 0 1

i i i i i i i

i i i i i i ii
i

i i i

a
a

T
d

θ θ α θ α θ
θ θ α θ α θ

α α
−

−⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

� � �

� � � (1)

The transformation matrix is a series of transformations:
 1. Translate di along zi-1 axis,
 2. Rotate θi about zi-1 axis,
 3. Translate ai along xi-1 axis,
 4. Rotate αi about xi-1 axis.
The overall transformation is obtained as a product
between three transformation matrixes:

base femur tibia base
coxa coxa femur tibiaT T T T= (2)

Considering fig. 2 and using (2) the coordinates of the leg
tip are:

1 1 2 2 3 2 3

1 1 2 2 3 2 3

1 2 2 3 2 3

x=cos (L + L cos + L cos(-))
y=sin (L + L cos + L cos(-))

d + L sin + L sin(-)z

θ θ θ θ
θ θ θ θ

θ θ θ=

� � �

� � �

� �

(3)

where:
d1 is the distance from the ground to coxa joint.
Li are the lengths of the leg links.

The centre of mass of each link is positioned relative to
the link frame by a position vector pi= [xi, yi, zi, 1] T. To
find the position of the centre of mass of each link relative
to leg frame, the coordinates pi are multiplied with the D-
H transformation giving the centre of mass positions:

Statically stable Statically unstable Critically stable

x0

L3

R3

L2

R2

L1

R1

YG

XG

ZG

q3

q1

q2

y0

x1 z1

z2

x2

x3

z3

d1

0 1...3,
i

i
CoM i ip T p == (4)

The position of centre of mass of the leg is calculated
using the following equations:

3 3 3

1 1 1
3 3 3

1 1 1

, ,
i li i li i li

i i i
g g g

li li li
i i i

x m y m z m
x y z

m m m

= = =

= = =

= = =
∑ ∑ ∑

∑ ∑ ∑

� � �
 (5)

where mli is the mass of link i.

2.2 Inverse Kinematics

The geometrical model described above establishes a
connection between the joint variable and the position and
orientation of the end frame. The inverse kinematics
problem consists of determining the joint angles from a
given position and orientation of the end frame. The
solution of this problem is important in order to transform
the motion assigned to the end frame into the joint angle
motions corresponding to the desired end frame motion.

The goal is to find the three joint variables θ1, θ2, and θ3
corresponding to the desired end frame position. The end
frames orientation is not an issue, since we are only
interested in its position.

Fig. 3. Illustrations for solving inverse kinematics.

Using (3) and considering the following constraints: all
joints allow rotation only about one axis, femur and tibia
always rotate on parallel axes, and the physical limitation
of each joint we can determine the joint angle.

The coxa joint angle can be found using atan2(y,x)
function as can be seen from fig.3.A.

1 tan 2(,)l la y xθ = (6)

In order to determine the other two angles a geometrical
approach was considered.

To further simplify the approach the leg tip coordinates
were transformed to coxa frame using the transformation
matrix below:

() ()
0 1

T Tcoxa coxa coxa
femur femur femur femur

coxa
R R dT

⎛ ⎞− •
⎜ ⎟=
⎜ ⎟
⎝ ⎠

 (7)

The angle φ2 which is the angle relating to the femur
servo position, can be derived directly from the triangle
(fig. 3.B):

2 2θ ϕ= (8)

The angle φ1 is the angle between the x-axis and line a
and can be calculated with atan2 function:

1 3 3tan 2(,)a y xϕ = (9)

where x3 and y3 are the leg tip coordinates in coxa frame.

If we consider φt to be the entire femur span and apply the
law of cosines results:

2 2 2
2 3

2

acos
2t

L a L
L a

ϕ
⎛ ⎞+ −

= ⎜ ⎟
⎝ ⎠� �

 (10)

where:

2 2
3 3a x y= + (11)

Next the femur angle can be found from:
2 2 2
2 3

2 3 3
2

acos tan 2(,)
2

L a L a y x
L a

θ
⎛ ⎞+ −

= +⎜ ⎟
⎝ ⎠� �

 (12)

Again, applying the law of cosines we find the φ3 angle:
2 2 2
2 3

3
2 3

acos
2

L L a
L L

ϕ
⎛ ⎞+ −

= ⎜ ⎟
⎝ ⎠� �

 (13)

Considering fig. 3B we see that θ3 can be found as
follows:

3 3θ π ϕ= − (14)

2.3 Dynamic Model

The purpose of robot dynamics is to determine the
generalized forces required to not only overcome the self-
inertial loads (due to the weight of the links inside the
robot) but also to produce the desired input motions to the
robot’s mechanism (Fahimi 2008).

In order to obtain a more precise model we divided the
mass of each link in two (Mi- servomotor mass, mi-link
mass, Mi > mi) (Fig. 4).

Considering the generalized coordinates vector q= [q1, q2,
q3]T the generalized vector forces can be computed using
the below equation:

i
i i

d L L
dt q q

τ
⎛ ⎞∂ ∂

= −⎜ ⎟∂ ∂⎝ ⎠&
 (15)

where: (,) (,) ().c pL q q E q q E q= −& &

Considering that all three servomotors have the same
mass M1=M2=M3=M and the last two links have the same

x

y

xl,yl

Leg tip

θ1

A B

y

Coxa joint

Femur joint

Tibia joint

φ2

φ3 L3

L2

a

x3,y3

φ1

θ3

x

Fig. 4. Illustrations for developing dynamic model of the
leg.

mass m2=m3=m2 but different lengths the expressions for
generalized forces are:

() ()()
()()

2 2 2 2
1 1 1 1 1 3 2 2 3

2 2 2
1 3 2 2 3

I I M l R m r r

M R m r r

τ θ

θ

′ ′′= + + + + + +

+ +

&&� � �

& & & &� � �

 (16)

()2 2 2
2 2 2 2 2 3 4 3 4 2

2
3 2 3 1

2
2 2 1

3{ [cos() (3)
2

cos() (2)]}
2

I I M l m r m r

mg l M m

ml M m

τ θ θ

θ θ

θ

′ ′′= + + + + −

+ + + +

+ +

&& &&� � � �

�
� � � �

� � �

(17)

()3 3 3 3 3 2 3

2
1

cos()

33
2

I I g l

mM m

τ θ θ θ′ ′′= + − +

•⎛ ⎞+ +⎜ ⎟
⎝ ⎠

&& � � � �

�
 (18)

where:

iI ′ -are the moments of inertia associated with the
servomotors;

iI ′′ -are the moments of inertia associated with the links;

ir -radius of instantaneous circle of rotation of the centre
of mass associated with the link i of the leg, i=2...4;

3R -radius of instantaneous circle of rotation of the
servomotor 3.

3. WORKSPACE ANALYSIS of the LEG

There are several things that are important when defining
the leg workspace. A basic one is that the workspace
should not be larger than the reach of the leg. Workspace
must be define in order to maximize motion but in the
same time to minimize singularities or any other pitfalls
(Maki 2007).

Workspace is also useful for walking algorithm to prevent
collision of adjacent legs by imposing restrictions for
direct or inverse kinematics.

The actuators used on the legs are capable of rotating 180
degrees. In order to minimize leg collisions the coxa angle
was limited between –π/4 and π/4. This restriction was

introduced due to mechanical construction of the leg. To
get the most out of motion the operation space of variable
θ2 was set from -π/2 to π/4 and θ3 from 0 to 3*π/4. In our
case there is a singularity when the x and y coordinates of
the leg tip are zero. In this configuration the value for θ1 is
arbitrary. To avoid this scenario we can define the x
coordinate greater than zero.

Physical limitations due to mechanical construction for
each joint angle are:

qcoxa =[-π/4,π/4],
qfemur=[-π/4,π/2],
qtibia =[0,3*π/4].

The defined workspace with the above limitation is
presented in fig. 5, 6 and 7.

Fig. 5. Leg workspace (XY view).

Fig. 6. Leg workspace (XZ view).

θ3

θ2

θ1

m1,L1,I1

m2,l2,I2

m3,l3,I3

M1,I’1

M2,I’2

M3,I’3

Ground zc

r2

R3 r3

r4

Fig. 7. Leg workspace (YZ view).

The leg workspace with the important point is presented
in fig. 8 and synthesized in table 1.

Fig. 8. Leg workspace. Extreme interest points.

Tabel 1. Leg workspace
Coordinates Min Max
X -7 47,2

Y -9,6 39,6
Z -22,2 49,8

Valid for l1=5, l2=25.2, l3=17 and for coxa joint coordinates (0, 15, 20)

4. Hexapod Robot Model

The legged locomotion on natural terrain presents a set of
complex problems (foot placement, obstacle avoidance,
load distribution, general stability) (Krzysztof et al 2008)
that must be taken into account both in mechanical
construction of vehicles and in development of control
strategies. One way to handle these issues is using models
that mathematically describe the different situations.
Therefore modeling becomes a useful tool in
understanding systems complexity and for testing and
simulating different control approaches (Barreto et al,
Fahimi 2008).

The robot structure considered has 6 identical legs and
each leg has 3 degree of freedom (RRR) (Fig. 9). All the
relevant points have been put on the model as can be seen
from fig. 9: coordinates of the centre of mass of each leg
Gi, i=1...6; leg numbering for easy understanding (1 to 6),
coordinates of the centre of mass of the robot G,
projection of the centre of mass into the support polygon
G’, robot’s centre of symmetry with the attached frame
OR(XR,YR,ZR), the global frame Ow(Xw,Yw,Zw).

The global frame is the frame that all other frames will be
defined relative to. The global frame is rigidly attached to
the lower left corner of the world so that the z-axis is
vertical and the xy-plane is aligned with the floor surface.

The origin of the robot coordinates is attached in the
centre of symmetry with the z-axis pointing up, the x-axis
pointing left and the y-axis pointing forward.

Fig. 9. Hexapod robot structure

The overall transformation from global frame to each leg
tip is obtained as follows:

i

i i

coxaW W R
tip R coxa tipT T T T= (19)

where:
W
RT is the transformation matrix between the global frame

and the robot frame and defines the rotation about y,x,z
(roll, pitch, yaw matrix).

i

R
coxaT is the transformation matrix from the robot centre to

each leg.
The position of robot’s centre of mass is calculated using
the following equations:

6 6 6

1 1 1
6 6 6

1 1 1

, ,
gi Li gi Li gi Li

i i i
G G G

Li Li Li
i i i

x m y m z m
X Y Z

m m m

= = =

= = =

= = =
∑ ∑ ∑

∑ ∑ ∑
 (20)

where:
3

1
L i li

i

m m
=

= ∑ , mli - mass of each leg

Fig. 10. Hexapod robot control interface.

5. SIMULATION PLATFORM

The main purpose of this simulation platform is to show
how the support polygon modifies when legs lose contact
with ground and if the projection of the centre of mass is
within the support polygon.

The simulation program was made using MatLab GUIDE
(Brian et al 2001).

The developed software platform can be used to analyze
what happens with the hexapod robot in gravitational field
and it also allows communication with the leg in real
world.

The analysis of the hexapod robot in gravitational field
can be group in two modes:
 - free fall mode. In this mode the mechanical confi-
guration of the legs is defined by their joints values, no
additional move is allowed.
 - transitory analysis. This mode is used to analysis what
happens with the robot between two static regimes.

The communication between the physical leg and Matlab
environment is made using Arduino Duemilanove
development board.

Giving a set of values for legs joints yields a stationary
mechanical configuration which generates a certain
support polygon in relation with which we analyze the
gravitational stability of the hexapod robot.

For a certain configuration of legs, the robot is statically
stable if the projection of the centre of mass is inside the
support polygon; it is at stability limit if the projection of

the centre of mass is on one side of the support polygon
and it is statically unstable if the projection of the centre
of mass is outside the support polygon. In this last case
the robot is shifting gradually its support polygon by
lifting/touching the ground with its legs, due to gravity,
until the condition for static stability is accomplished.

The shape of the support polygon needed for minimum
static stability is the triangle.

5.1 Program Interface

When the interface is launched the robot is first drawn in
a stable configuration as shown in fig. 10. The interface is
divided basically into 2 areas: in the upper left the robot is
displayed (plotted) according to the values set by the user
and in the upper right and bottom we can find the controls
for the robot. The controls for the robot are structured
mainly in 3 parts: joints control, position control, walking
control. Joints control and position control consists of a
list where the leg number it put on and a panel where the
user can set the values for each joint or position (using
direct and inverse kinematics). Walking control consist of
choosing the terrain on which the robot will move. The
terrain can be choosing using the immediate (controls)
checkboxes.

The controls for each leg are encapsulated into a panel
identified by leg number. Every slider has an editable
textbox where the value is displayed and controls a
certain link of the robot. If we use a slider the associated
editable textbox value is updated and vice versa. Also the
robot leg position is updated with the data from the slider

or from the textbox. The controls for link length or mass
affect all the legs because they are considered identical.

The button label Leg Control from fig. 10 launches a
second interface like in fig. 11. The second interface
allows both hardware and simulated control for a single
leg. This interface can be used both in offline mode or
online mode.

Fig. 11. Leg control using Arduino Duemilanove

The graphical representation of the robot also allows
seeing the shape of the support polygon which is updated
according to the legs on the ground. The support polygon
is drawn only if the distance from the tip of the leg to the
ground is smaller than a threshold. This threshold is
modifiable (but not present in the interface) and was
introduced as a way to compensate certain position errors
that may occur due to real servomotors.

The simulation program shows all the stages the robot
goes through for a better understanding. For simplicity
and better understanding of the robot stages the model is
drawn in a simpler way.

5.2. Simulation Algorithm

The authors have elaborated an algorithm in order to
achieve the goal of analyzing the static stability of a
hexapod robot in gravitational field. The algorithm is
structured in 5 steps as following:
 - setting the joints values
 - determine the mechanical configuration
 - determine which legs are on the ground
 - evaluation of the static stability condition
 - while (condition of static stability = false)
 - determine the rotation line using the minimum
 distance from G’ to support polygon’s sides
 - rotate the robot about the line found
 - determine which legs are on the ground
 - evaluation of the static stability condition

The determination of static stability condition is resumed
at finding if the projection of robot’s centre of mass is
inside the support polygon. For this the authors used the
following algorithm:

 - determine the convex polygon
 - determine the area of the convex polygon (A)
 - form the n triangle using 2 consecutive sides of the
support polygon and the projection of centre of mass, G’,
(e.g. ABG’, BCG’… etc.)
 - determine the areas of the n triangles formed (Ai)
 - if (ΣAi = A) then condition=true
 - else condition=false

5.3 Hardware Leg Control

The system proposed by the authors (Fig. 12) is similar
with the system xPC-Target component of Matlab. The
software that make possible the communication between
Arduino board and Matlab has been released with the last
version of Matlab. Mathworks has also developed support
for Arduino in Simulink. A part of the communication
software is uploaded on the Arduino board and plays the
server role.

There are two programs that can be uploaded on the
board:
 - adiosrv.pde with which all the input and output of the
board can be manipulated.
 - motorsrv.pde designed exclusively for motor control via
a motor shield.

The major drawback of using the original motorsrv.pde
was that this file was developed as support for a specific
motor shield that can only control 2 servomotors. So we
modify the file in a way that now allows using all 6 PWM
channels available.

USB
Matlab

Arduino

 AtMega328

P
W
M Leg

Fig. 12. Leg control system

The other part is a Matlab class (arduino.m) and plays the
role of the client. Once the class is instantiated it makes
possible sending commands over USB port.

The direction of motion of the servo is automatically
determined. If we set a rotation with 900 and then a 300
rotation the servo will rotate 600 anticlockwise.

5.4 Walking Algorithm

During walking or running the leg move cyclically and in
order to facilitate analysis or control, the motion of the leg
is often partitioned in two parts:
 - support phase or stance, when the robot uses the leg to
support and propel.
 - transfer phase or swing, when the leg is moved from
one foothold to the next.

The stance part of the walking algorithm is supposed to
move the leg in a straight line. The swing part of the
algorithm must lift the leg off the ground, move it back to
the starting position and lower it down to the ground
again. The walking algorithm is based on the kinematical
model of the leg.

Leg joints

Step length Leg lift Speed

Parameters

Walking control

Stance Swing

Algorithm

Fig. 13. Walking algorithm diagram

Parameters introduce in the algorithm (Fig. 13) are:
 - speed; define the speed of the leg tip,
 - step length; define the length of the step,
 - leg lift; this defines how high the leg is lifted when it’s
in the swing-cycle.

For a smooth straight motion, the swing time must be
equal to the stance time for each leg.

In the stance part of a step, the leg only moves in a
straight line. At time t from the start of the step, the
coordinates (x, y, z) for the trajectory will be:

x=

y= *
2

leglength
steplength t speed

z legheight

−

= −

(21)

In the swing part of the step, the leg first has to be lifted
of the ground, and then moved back to where the next
step is supposed to start and then lowered to the ground.
To find out where in the swing-cycle the leg is at time t
from the start of the cycle we first have to calculate the
total length the leg has to travel:

(2 *) *
_

leg lift step length td ist
sw ing cyc le

−
= (22)

One step consists of one stance cycle and one swing cycle
but to maintain a smooth motion of the leg, it’s important
that the swing cycle continues where the stance cycle
ended, and that the swing cycle ends where the new
stance cycle starts. This does not only hold for the
position, but also for the speed and the direction of the
speed.

6. EXPERIMENTAL RESULTS

6.1 Free fall analysis

The free fall analysis represents what happens with the
robot left to fall on the ground from a height greater than
the extension of the legs. Keeping in mind that the joints
are locked by the values prescribed by the user, no extra
movements are allowed (no active stability). The only

force that acts upon the robot is the gravitational force.
For a given set of joint values the robot passes through
many transitory stages until it becomes statically stable
(Fig. 14. a, b, and c). Legs that have contact with the
ground determine the shape of the support polygon
(triangle, quadrilateral, pentagon or hexagon). In order to
know if the robot achieves static stability the projection of
G (G’) must be inside the support polygon. To solve this
problem the above algorithm is applied.

Fig. 14.a: Phase one of falling.

In fig. 14.b it can be seen that even in this configuration
G’ is not inside the support polygon and the robot
continues it’s falling and rotates about the line determined
by leg 2 and leg 5 until the first leg touches the ground,
which in this case, is leg 3.

Fig. 14.b: Phase two of falling.

In fig. 14.c a new configuration is formed and if the
algorithm described above it is applied, point G’ is inside
the support polygon and the robot becomes statically
stable and the falling stops.

Fig. 14.c: Phase three – statically stable.

6.2 Transitory Analysis

In this mode of analysis the robot passes between two
static regimes. A static regime is identified by the
condition of stability. The user can alter a static regime
using the controls for joint values or position of the leg
tip. This analysis can also be interpreted as a continuation

of free fall analysis case if the condition of stability has
been met.

In fig 15.a the robot has static stability, the support
polygon described by the legs on the ground is a
quadrilateral (formed by legs 1, 2, 5 and 6) and the
projection of the centre of mass is inside the support
polygon.

Fig. 15.a: Phase one – statically stable.

Next, lifting leg 2 the support polygon changes its shape
becoming a triangle. Using the algorithm described
above, the projection of G is not inside the support
polygon and the robot becomes statically unstable and
starts falling (Fig. 15.b).

Fig. 15.b: Phase two: falling

Following the algorithm the next leg closest to the ground
is leg number 4. In fig. 15.c the projection of G is inside
the newly support polygon, the robot stops falling and
becomes statically stable.

Fig. 15.c: Phase three – statically stable

6.3. Hardware Leg Control

The algorithm for controlling the leg joints, including
direct kinematics and inverse kinematics, was
implemented in Matlab in order to analyze leg
performance.

The results of the tests can be view in the chart below.

Fig. 16. Hardware leg control results.

The main errors occurred due to the fact that we can only
send integer numbers for joint values.

Other errors occurred due to the fact that the joint are
assembled using bolts and nuts. Normal usage of the
robot causes the nuts and bolts to loosen causing a lot of
clearance in the joints.

6.4 Inclined Plane Walking Approach

The movement on inclined plane is realized by moving
one leg from one side at the time as can be seen from fig.
17, 18 and 19. As impose restrictions for the robot we can
enumerate the following: the robot body must be leveled
with respect to the ground, coxa angle is set for π/4. The
angle for the plane is 100.

Fig. 17. Moving leg 1

Fig. 18. Moving leg 3.

Fig. 19. Moving leg 5.

Once all the legs from one side have been moved to a new
position the robot body will be dragged using all the coxa
joints so that the robot can move forward (Fig. 20).

Fig. 20. Robot body drag.

After the body has been dragged to the new position the
legs 2, 4 and 6 from the other side must be moved
forward (Fig. 21, 22 and 23).

Fig. 21. Moving leg 2.

Fig. 22. Moving leg 4.

Fig. 23. Moving leg 6.

After this cycle of movement the body is dragged forward
again and the algorithm resumes. Finally the robot with
all the legs are on the inclined plane with its body leveled
as can be seen from fig. 24.

Fig. 24. Final position of the robot on the inclined plane.

Also it can be seen the trajectory of the robot on the
inclined plane.

Fig. 25. Trajectory of the robot during walking

6.5 Stair Step Walking Approach

As with the previous case of movement, this case respects
the algorithm describe in the previous chapter. The
movement on stair step is realized by moving one leg
from one side at the time as can be seen from fig. 26, 27
and 28. As impose restrictions for the robot we can
enumerate the following: the robot body must be leveled
with respect to the ground, coxa angle is set for π/4. The
height of the stair step is 1/3 of the height of the robot.

Fig. 26. Moving leg 1.

Fig. 27. Moving the leg 3.

Fig. 28. Moving the leg 5.

Once all the legs from one side have been moved to a new
position the robot body will be dragged using all the coxa
joints so that the robot can move forward (Fig. 29).

Fig. 29. Robot body drag

After the body has been dragged to the new position the
legs 2, 4 and 6 from the other side must be moved
forward (Fig. 30, 31 and 32).

Fig. 30. Moving leg 2.

Fig. 31. Moving leg 4.

Fig. 32. Moving leg 6.

After this cycle of movement the body is dragged forward
again and the algorithm resumes. Finally the robot with
all the legs are on the stair step with its body leveled as
can be seen from fig 33.

Fig. 33. Final position of the robot.

Also it can be seen the trajectory of the robot on during
walking.

Fig. 34. Trajectory of the robot during walking

7. CONCLUSION

In this paper a simulation platform for legged mobile
robots was presented, that allows stability analysis and
full control of the robot.

Free fall analysis is useful for investigating what happens
with the robot on uneven terrain or for accidents that may
happen due to lose of contact, slippery surface,
servomotor failure, power supply failure.

Transitory analysis represents a more important case for
locomotion, gait generation. When starting to develop a
gait cycle we can have a big picture of what happens
when the robot starts to move, how the support polygon
changes and what actions (what leg should be actuated)
must be applied to the robot in order to meet condition of
stability.

The interface will be imbuing with additional walking
algorithms and controls.

The interface was designed to be simple and intuitive and
to offer the user a simple and efficient way to control
every aspects of the robot (angles, masses, lengths, leg
control).

The two analyses made in this article represent the bases
for next activities on static stability.

Hardware leg control will be imbuing to better precision.

In the future the program will be upgraded permitting
additional controls and functions for stability analysis
(including dynamic stability) on uneven ground and
implementing collision detection algorithms. Also the
results of these studies represent the bases for different
strategies of locomotion on different terrains. The
experimental results will become a standard for a real
hexapod robot.

ACKNOWLEDGMENT

 This work was partially supported by strategic grant
POSDRU/88/1.5/S/50783, Project ID 50783 (2009), co-
financed by the European Social Fund – Investing in
People, within the Sectoral Operational Programme
Human Resource Development 2007 – 2013.

REFERENCES

Barreto J., Trigo A. ,Menezes P., Dias J., Kinematic and
dynamic modeling of a six legged robot.

Bensalem, S.,Gallien, M., Ingrand, F., Kahloul, I.,
Nguyen Thanh-Hung (2009), Designing autonomous
robots, IEEE Robotics & Automation Magazine, Vol.
16, March

Brian R., Hunt R., Lipsman L., Rosenberg J. M.,(2001), A
guide to MATLAB for beginners and experienced
users, ISBN-I3:978-0-521-00859-4, Cambridge
University Press

Carbone G., Ceccarelli M., (2005), Legged robotic
systems, Cutting Edge Robotics, ARS Scientific
Book, pp. 553-576, Wien.

Fahimi, F. (2008), Autonomous robots: modeling, path
planning, and control, Springer.

Krzysztof W., Dominik B., Andrzej K.,(2008) Control
and environment sensing system for a six-legged
robot, Journal of Automation, Mobile Robotics &
Intelligent Systems, Volume 2 No3.

Maki K. H.(2007) Bioinspiration and Robotics:Walking
and Climbing Robots, ISBN 978-3-902613-15-8, I-
Tech Education and Publishing, Croatia

Schilling R. J. (1990) , “Fundamentals of robotics:
analysis and control”, ISBN: 0-13-344433-3,
Prentice Hall, New Jersey, USA.

http://www.atmel.com/dyn/resources/prod_documents/82
71S.pdf
www.mathworks.com

