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Abstract: A problem arises in data mining, when classifying unbalanced datasets using Support Vector 
Machines. Because of the uneven distribution and the soft margin of the classifier, the algorithm tries to 
improve the general accuracy of classifying a dataset, and in this process it might misclassify a lot of 
weakly represented classes, confusing their class instances as overshoot values that appear in the dataset, 
and thus ignoring them. This paper introduces the Enhancer, a new algorithm that improves the Cost-
sensitive classification for Support Vector Machines, by multiplying in the training step the instances of 
the underrepresented classes. We have discovered that by oversampling the instances of the class of 
interest, we are helping the Support Vector Machine algorithm to overcome the soft margin. As an effect, 
it classifies better future instances of this class of interest. The experiments were performed using real 
data acquired from a monitoring sensor system, stored in three databases and replicated on an 
aggregation server. 
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1. INTRODUCTION 

Real-time monitoring data mining has been a necessary 
means of improving operational efficiency, economic safety 
and fault diagnosis of Wireless Sensor Network’s data. Along 
with the rapid development of sensors and detection 
technique and abundant signal sources, more and more data 
are accumulated which provides a basis for fault diagnosis for 
big machines.  

Fault diagnosis is a pattern recognition process essentially. 
First of all, the signal parameter is obtained in original space, 
which is mapped into observation space to extract feature 
vectors subsequently, the fault feature database is established, 
and these vectors are input into classifier for fault diagnosis 
(Yuan, 2011; Hong and Jing, 2011). 

Proposed by Vapnik and his colleagues in 1990’s (Vapnik, 
2000), SVM is a new machine learning method based on 
Statistical Learning Theory and it is widely used in the area 
of pattern recognition and probability density estimation due 
to its simple structure and excellent learning performance. 
Joachims validated its outstanding performance in the area of 
text categorization in 1998 (Joachims, 1998). SVM can also 
overcome the over fitting and under fitting problems (Hong et 
al., 2009; Duan et al., 2009), and it has been used for 
unbalanced data classification (Li et al., 2009; Xinfeng et al., 
2009).   

The SVM technique is based on two class classification. 
There are some methods used for classification in more than 
two classes. Looking at the two dimensional problem we 
actually want to find a line that “best” separates points in the 
positive class from the points in the negative class.  The 
hyper plane is characterized by the decision function  

))(,sgn()( bxwxf += φ , where w is the weight vector, 
orthogonal to the hyper plane, b is a scalar that represents the 
margin of the hyper plane, x is the current sample tested,   

)(xφ is a function that transforms the input data into a higher 
dimensional feature space and “,” representing the dot 
product. Sgn is the signum function. If w has unit length, then   

>< )(, xw φ is the length of )(xφ  along the direction of w.  

To construct the SVM classifier one has to minimize the 
norm of the weight vector w (where |||| w  represents the 
Euclidian norm) under the constraint that the training patterns 
of each class reside on opposite sides of the separating 
surface. The training part of the algorithm needs to find the 
normal vector w that leads to the largest b of the hyper plane. 
Since the input vectors enter the dual only in form of dot 
products, the algorithm can be generalized to non-linear 
classification by mapping the input data into a higher-
dimensional feature space via an a priori chosen non-linear 
mapping function φ  and construct a separating hyper plane 
with the maximum margin.  



 

 

     

 

In solving the quadratic optimization problem of the linear 
SVM (i.e. when searching for a linear SVM in the new higher 
dimensional space), the training tuples appear only in the 
form of dot products, >< )(),( ji xx φφ , where )(xφ  is simply 

the nonlinear mapping function applied to transform the 
training tuples. Expensive calculation of dot products 

>< )(),( ji xx φφ in a high-dimensional space can be avoided 

by introducing a kernel function K: 

)()(),( jiji xxxxK φφ ⋅=     (1) 

 The kernel trick can be applied since all feature vectors only 
occur in dot products. The weight vectors than become an 
expression in the feature space, and therefore φ will be the 
function through which we represent the input vector in the 
new space. Thus it is obtained the decision function having 
the following form: 
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where iα represent the Lagrange multipliers and the samples  

ix for which 0>iα  are called Support Vectors (Han and 
Kamber, 2006).  

Because of the uneven distribution and the soft margin of the 
SVM, the algorithm tries to improve the general accuracy of 
classifying a dataset, and in this process it might misclassify 
a lot of weakly represented classes.  

This paper introduces an algorithm named Enhancer aimed 
for increasing the TP of underrepresented classes of datasets, 
using Cost-sensitive classification and SVM. 

2. COST-SENSITIVE APPROACH 

In actual applications, it exist the problems that wrong 
classify result in different harm degree of different sort 
sample. The solution proposed in literature is the Cost-
sensitive SVM approach (He and Garcia, 2009; Dai et al., 
2009; Santos-Rodriguez et al., 2009), a new method for 
unbalanced classification.  

Fundamental to the Cost-sensitive learning methodology is 
the concept of the cost matrix. This approach takes the 
classify cost into account, and it aims to reduce the classify 
cost to the least. Instead of creating balanced data 
distributions through different sampling strategies, Cost-
sensitive learning targets the unbalanced learning problem by 
using different cost matrices that describe the costs for 
misclassifying any particular dataset. A very useful tool, the 
Confusion Matrix for two classes is shown in Table 1. 

The true positives (TP) and true negatives (TN) are correct 
classifications. A false positive (FP) occurs when the 
outcome is incorrectly predicted as 1 (or positive) when it is 
actually 0 (negative). A false negative (FN) occurs when the 
outcome is incorrectly predicted as negative when it is 
actually positive. 

Table 1. Confusion Matrix for a two-class problem 

Predicted Class  

Cls= 1 Cls= 0 

Cls= 1 TP FN Actual 
Class Cls= 0 FP TF 

 
The true positives (TP) and true negatives (TN) are correct 
classifications. A false positive (FP) occurs when the 
outcome is incorrectly predicted as 1 (or positive) when it is 
actually 0 (negative). A false negative (FN) occurs when the 
outcome is incorrectly predicted as negative when it is 
actually positive. 

In addition, the accuracy measure may be defined. It 
represents the ratio between correctly classified instances and 
the sum of all instances classified, both correct and incorrect 
ones. The above measure was defined as: 
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More precisely, the classification gives equal importance to 
all the misclassified data (false negatives and false positives 
are equally significant). The Cost-sensitive classifications 
strive to minimize the total cost of the errors made by a 
misclassification, rather than the total amount of 
misclassified data. 

Using the measures defined above, we calculated the 
accuracy mean, the true positives mean, and also the accuracy 
deviation and the true positives deviation: 
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3. DESCRIPTION OF THE ENHANCER 

Experimentally we have found out that the features that help 
in raising the TP of a class are the cost matrix and the amount 
of instances that the class has. The last one can be modified 
by multiplying the number of instances of that class that the 
dataset initially has. 

The algorithm proposed for increasing the TP of weakly 
represented classes, the Enhancer is detailed in the following 
pseudo code: 

1.  Read and validate input; 
2.  For all the classes that are not well represented: 



 

 

     

 

  BEGIN 
   Evaluate class with no attribute added 
   Evaluate class at Max multiplication rate 
   Evaluate the class at Half multiplication 

REPEAT 
 Flag = False 

Evaluate the intervals (beginning, middle), 
  (middle, end)  

If the end condition is met  
(i.e. If the difference between the beginning and the 
end of an interval is very small, under a set epsilon 
AND 

  If μ≥Δ+Δ || AccTPi , 

  where )( inTPDeviatioonAccDeviati +=μ  ) 

 Flag = True 
If the first interval has better results we should use 
this, otherwise the other 
Find the class evaluation after multiplying class        
instances middle times 
UNTIL Flag = False 
END  

3.  Multiply all the classes with the best factor obtained;  
4. Evaluate dataset.  
While reading and validating the input we collected from the 
command line the parameters that were used by this 
classifier, together with the classifier parameters that were 
usually transmitted to the program. The input parameters 
needed were the number of the class that needs to have its TP 
improved and the ε that is the maximum allowed difference 
between the evaluation of the two intervals (beginning, 
middle) and (middle, end). 

Our classifier had also as input parameters the multiplicands 
that the optimization algorithm had used. There are available 
two kinds of evaluations that also accept class multiplication: 

• Evaluating a dataset with only the instances of one class 
being multiplied, and keeping the other still to their initial 
value. This kind of operation was especially useful when we 
tried to find out what was the best multiplicand for a certain 
class. 

• Evaluation of a dataset where the instances of all classes 
could undergo a multiplication process. The multiplication of 
the classes could be any real number greater or equal to 1. If 
the multiplicand was 1, then the class remained with the 
initial number of instance. 

One of the most important parts in this pseudo code is 
knowing what, when, and how to evaluate data set, in order 
to maximize efficiency of the algorithm. This problem only 
appears when the search for the perfect number to be used as 
a multiplier for a certain class is not assisted by the human 
component. 

It is also  important to avoid performing the evaluation on 
data that the algorithm used to train the model on, because 
otherwise the algorithm is going to over fit on this particular 
dataset, and when new data is going to be introduced to be 
tested, the results are going to be disastrous. This way of 
evaluation is the 10 fold cross validation. Like this the dataset 
is being randomized, and stratified using an integer seed that 
takes values in the range 1-10. The algorithm performs 10 
times the evaluation of the data set, and all the time has a 
different test set (Fig. 1). 

 
Fig. 1. 10 fold cross validation 
So, after performing the stratification, each time the data set 
was split into the training and test set, the Enhancer took the 
training set and applied classMultiply() on it. Like this the in-
stances that were going to be multiplied were not going to be 
among that data that was going to test the result of the SMO 
model, the Weka implementation of SVM. The performance 
of the algorithm is only due to the multiplied data, and there 
is no over fitting to this specific data set. The data was trained 
in order to be evaluated as accurately as possible by a general 
test set, and not only by the one for testing. 

The instances were multiplied using the properties of the In-
stances object in which they were stored following this 
pseudo code: 

1  aux← all instances of class x from dataset 
2  for i=0 to max do 
3      add (instance from aux to dataset) 
4  Randomize dataset  

By performing this series of operations the number of in-
stances of the desired class was multiplied by the desired 
amount and in the same time we had a good distribution of 
instances inside the dataset in order not to harm or benefit 
any of the classes in the new dataset. 

In order to see what the best improvement is, we need to   
calculate an ending property of the logarithm. After some 
experiments the conclusion was that we must optimize the TP 
and in the same time keep the accuracy as high as possible. 
This can be translated as follows: 

max=Δ+Δ= CCi ATPϕ             (8) 

This means that we are trying all the time to maximize the TP 
of classes and also the Accuracy. The only flaw in this 
equation is the Accuracy is medium (50%) and the TP of that 
certain class is really close to 0. If realize to get the TP of the 
class as high as 80-90%, the loss in the accuracy, that is 
going to appear inevitably, is going to pass unnoticed by this 



 

 

     

 

function. That is why we needed to introduce the following 
constraint: θ>Δ CCA , where θ is the minimum allowed drop 
in the accuracy.   

The Enhancer algorithm described in the pseudo code used a 
Divide et Impera technique, that searched in the space (0 
multiplication – max multiplication) for the optimal 
multiplier for the class. The algorithm is going to stop its 
search under two circumstances:  

• The granulation is getting to thin, i.e., the difference 
between the beginning and end of an interval is very small 
(under a set epsilon). This constraint is set, in order not to let 
the algorithm wonder around searching for solutions that vary 
one from another by a very small number (<10-2).  
• The modulus of the difference between the CCi ATP Δ+Δ  from 
the first and the second interval should be bigger that a 
known value. This value is the considered to be the deviation 
of the Accuracy added to the deviation of the TP of that class: 

TPACC σσμ +=               (9) 

After finding the best multiplicand for the class that we are 
trying to optimize, we constructed a training set that 
contained each class instances multiplied by the optimal 
multiplicand found at the previous step. A fine tuning was 
performed on the multiplicands of each of the other weakly 
represented classes, in order to raise the accuracy and the TP 
of the other classes while keeping the TP of the interested 
class at least at the same value that the algorithm retrieved. 

4. EXPERIMENTAL RESULTS 

4.1. The autonomous measuring system description 

Classification of sensory data is a major research problem in 
wireless sensor networks and it can be widely used in 
reducing the data transmission in wireless sensor networks 
effectively and also in process monitoring. 
In our wind energy monitoring, sensor node monitors six 
attributes: speed, direction, temperature, pressure, humidity, 
and battery voltage. 
The autonomous measuring system used for the estimation of 
wind energy is composed by: 
• a measurement tower 85 meters height, with assembly 

and structure accessories (guy wires, anchors, clamping 
fixture, auxiliary masts, mounting plate, aviation light 
and/or beaconing) (Fig. 2); 

• four Thies first class wind speed sensors (V1, V2, V3, 
V4, depending upon climatic conditions with heating); 

• two Vilmers wind direction sensors D1 respectively D2; 
• two temperature sensors with shielding T1, T2; 
• one barometric pressure sensor P1; 
• one relative humidity sensor H Energy Supply System 

consist on PV-Module, Voltage-regulator, 12V Battery, in 
lockable steel cabinet; 

• wireless data transmission system (GSM-Modem + 
1xCampbell CR1000 data logger inclusive leads). 

 

Fig. 2. The measurement tower 
The sensors are distributed on the entire measurement tower 
(Fig. 3). 

 
Fig. 3. Sensors distribution on the measurement tower 
 
The wind speed sensors are designed for the measurement of 
the horizontal component of the wind speed in the fields of 
meteorology and environmental protection and the wind 
direction transmitter serves for the detection of the horizontal 
wind direction. Some special characteristics are: high level of 



 

 

     

 

measuring accuracy and resolution, high damping ratio at a 
small delay distance, low starting threshold and magnetic 
coupling, which is free of wear. The temperature and pressure 
sensors measure the temperature and relative humidity of the 
ambient air. A radiation shield protects the sensor against rain 
and solar radiation. The humidity sensor is design for 
measurement of the humidity of the air. The U_Batt sensor 
measures the battery voltage values, and PTemp_C registers 
the temperature from the lockable steel cabinet (Fig. 4). 
 

 
 

 
Fig. 4. The lockable steel cabinet 
 
4.2 The distributed database replication 
Our distributed database system includes three servers 
situated on three geographic remote sites. Each server has a 
client with insert rights (Fig. 5).  

 
Fig. 5. The distributed database replication schema 
 

All three databases contain the information acquired from the 
sensors and are replicated on an aggregation server. This 
server has a client with select rights. On this machine is 
running our proposed algorithm that detects the anomaly 
values from the aggregated database. 
 
4.3 The database description 
The experiments performed in this paper evaluate data 
obtained from our wireless sensor network and accumulated 
in the period 1-31 May 2010. 
The diagram of one database and a brief description of the 
aggregated dataset are presented in Fig. 6 and Table 2.   

 
Fig. 6. The structure of one database 

Table 2. The dataset used in the experiments 

Dataset No. of  
attributes 

No. of 
instances 

Attributes 
types 

Aggregated 
dataset 

4+1 17280 Num, Nom 

 

The class distribution for the dataset is illustrated below (Fig. 
7): 

59%

41%

Dataset class distribution

Class 0

Class 1

 
Fig. 7. The aggregated dataset class distribution 
In order to improve the classification of the weakly 
represented class in this dataset, in which they are in very 
small numbers with respect to the other classes, two 
approaches were tested: 

•   Cost-sensitive classification; 
• Multiplication of the instances of weakly represented 
classes. 
 
4.4  Cost-sensitive classification 
In the case of the Cost-sensitive classification, the main aim 
was to find a good cost matrix, to increase the cost of 
wrongly classified instances that belong to the weakly 
represented class, in our case to the anomaly class. In order to 
perform this, we used the Cost-Sensitive Classifier that can 



 

 

     

 

be found in Weka.classifiers.meta on the dataset described 
above as follows: 
•  We have set as cost matrix the default cost matrix (0 on the 
main diagonal and 1 in rest); 
•  We evaluated the dataset; 
• We “fixed” the cost matrix, to increase the cost of the 
wrongly classified instances where the Confusion Matrix 
indicated FN, to force the algorithm to correctly classify 
those instances as well. 
 • We re-evaluated the dataset and redid the previous step. 
By modifying the Cost Matrix, we obtained a variation quite 
high in the TP of Class 1 (60%-92%, Fig. 8). The accuracy of 
classification took values between 84% and 93%. This class 
has 7128 instances from the total of 17280 that are available 
in the dataset.  
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Fig. 8. Class 1 TP variation with respect to Cost Matrix 
change 

Cost-sensitive classification proved to be a good method of 
improving the TP of the unbalanced classes in the dataset that 
were weakly connected with one-another.  

When the instances of certain classes were not correctly 
identified, this could be because of the soft margin of the 
SVMs, which were interpreted that the instances of the 
weakly represented classes are just few errors in the 
classification of the larger classes. 

4.5 Multiplying underrepresented classes 
In order to improve the classification of one class of interest 
from the training dataset using SVM, we needed to improve 
its chances of being recognized. In order to recognize classes, 
SVM needed support vectors from those classes and that’s 
why we had increased the number of instances of a weakly 
represented class and in the same time we had kept the value 
of the other classes constant. First, we tried to find out what 
is the best multiplier to use for the anomaly class and how 
much did it affect the rest of the evaluation.  

After applying the class multiplications all the TP of Class 1 
hits a zone of instability, until the multiplying factor reached 
1.0, when the TP ascent stabilized. The accuracy of the Class 
1 reached 0.91 for the TP value equal to 100%, meaning a 
comparable value as the ones obtained using only the Cost-
sensitive classification (Fig. 9). 
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Fig. 9. The evolution of the TP of Class 1 and the general 
accuracy with respect to the number of instances of Class 1 
 

So, the Enhancer multiplied the information accordingly, 

such that to maximize CCi ATP Δ+Δ , so the accuracy does not 
fall below a set ε. We set ε to 0.05 (5%) and we concluded 
that with the new algorithm, the TP of a certain class of 
interest was increased significantly while keeping the general 
accuracy in the desired range (Fig. 10). 
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Fig. 10. Comparison between the TP of the class 1 resulting 
Cost-sensitive SMO Evaluation and with the Enhancer  

We observed that the last classifier performs the best and the 
Enhancer algorithm could have pointed even more accurately 
the instances that belong to the class of interest, but with the 
downside of pulling the general accuracy below the threshold 
preset ε.  

The cost matrices that was used here is the best one found in 
the evaluation step. The rows are read as “classified as”, and 
columns as “actual class” (Table 3). 

Table 3. The cost matrix used 

Cls 0 Cls 1  

0.0 3.0 Cls 0 

2.0 0.0 Cls 1 

 

 



 

 

     

 

5. CONCLUSIONS 

This paper is focused on providing the Enhancer, a viable 
algorithm for improving the SVM classification of 
unbalanced datasets.  

Most of the times, in unbalanced data sets, the classifiers 
have a tendency of classifying in a very accurate manner the 
instances belonging to the best represented classes and do a 
sloppy job with the rest.  In order to overcome this problem 
we have developed the new classifying algorithm that can 
classify the instances of a class of interest better than the 
classification of the usual SVM algorithm. All of this is 
happening while keeping the accuracy at an acceptable level.  

The algorithm improves the classification of the weakly 
represented class of the dataset. The idea of multiplying the 
unrepresented classes is original and came from the 
experimental work. We have also discovered that by over 
sampling the instances of the class of interest, we are helping 
the SVM algorithm to overcome the soft margin. As an 
effect, it classifies better future instances of this class of 
interest. 

The algorithm improves the classification of the weakly 
represented class in the dataset and it can be used for fault 
diagnosis in Wireless Sensor Network’s data. This solution is 
especially important when it is far more important to classify 
the instances of a class correctly, and if in this process we 
might classify some of the other instances as belonging to 
this class we do not produce any harm.  

As a future work, we propose to maximize accuracy with 
geometric mean metric in order to balance both classes at the 
same time. This evaluation measure will allow us to 
simultaneously maximize the accuracy in positive and 
negative examples with a favourable trade-off.  
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