

Sensorless parking area management system

Dan Adrian Marior*, Constantin Cîrciumaru**

* Department of Automation in the Faculty of Automation, Computers and Electronics,
Craiova (e-mail: marior@ automation.ucv.ro).

** IT Department of the Ford Motor Company, Craiova
(e-mail: ccircium@ford.com)

Abstract: The paper deals with the problem of managing the utility vehicle park of the Ford Motor
Company plant in Craiova. In order to obtain the minimal cost solution, we propose a sensorless parking
management system, which handles the parking spots, the tracking of the vehicles (whether they are
inside the parking area or not), and reports to management in case there are situations that go beyond
normal workflow rules.

Keywords: sensorless, management, Ford, parking, ASP.NET.

1. INTRODUCTION

Utility vehicles from companies around the world are an
issue to manage and synchronize with the workflows that
take place in the daily activity of their plants. Most
companies rely on their own vehicle fleet (whether they are
land, sea or air vehicles) for the incoming and outgoing
objects necessary for the factory to work. Analogous to the
control systems theory approach, the plant as a whole can be
regarded as a system that accepts input (raw materials, semi-
assembled goods, etc.) processes them and produces finite
goods, which can be regarded as an output.

The problem of parking space management started as soon as
the number of cars in a given area has increased over the
limit to which human or automatic supervising intervention is
not necessary. Of course, in this case, we are talking about
industrial platforms, or their adjacent employee parking area.
In the usual public city car park situation, the car owners
apply the greedy type law of “first come, first served”, which
seems to work just fine until various conflicts arise. The
approach we propose however depends on whether the
managers decide it is useful to implement it or not.

In this paper we intended to approach the already investigated
problem of optimizing parking spots allocation due to another
motivation: cost optimization by eliminating the sensors
needed to appropriately track every movement of the cars
pertaining to a large company such as Ford. The optimization
problem is mainly a theoretical one
(www.stackoverflow.com) and has been approached from a
lot of angles, for example in (Zoghi et al, 2006), (Space
Utilization Optimization, 2009), (Chen et al, 2011) and
(Meiping et al, 2008) only to mention a few, and our goal
was to implement a practical approach to the subject in the
real case of the Ford plant here in Craiova. In the various
other approaches authors use sensors and dedicated hardware
to keep track of the cars and trucks on routes that are usually
either predefined but can also be partially fixed. Sensors are

placed on cars and/or in every parking spot or in the
immediate vicinity in order to locate the car precisely or just
to detect its presence somewhere in the parking spot. In some
approaches data about the cars is stored in databases. Ford
plants across the globe have internal tracking systems for the
cars, with the help of sensors and cameras, for the route the
car has to take before it leaves the factory – a rather
complicated one.

Our approach was to design a software application that would
be used to take care of every aspect in the usual parking
workflow. The application is an ASP.NET web application,
the latest and best Microsoft alternative to build client/server
web applications from the ground up.

The first stage in the automation of the parking lot, in our
opinion, is the implementation of the software we built in the
case of the employee car park and then, after the time period
the drivers need to accommodate to it, move it on to the next
stage where it will have to manage the inbound and outbound
flow of vehicles serving the plant. The second stage would be
most useful when the company will go to mass production
according to the initial plans dating back when the factory
was placed in the possession of Ford. However, the
application is not yet able to withstand that amount of
processing, given the fact that the hardware requirements will
be most certainly different which will in turn should trigger
the usage of a different database management system, for
example SQL Server Developer or Standard edition, for
example, as opposed to the free Express version we used.

Section I prepares the reader for the main purpose of this
paper, explains the foundation for it, mentions and explains
other papers in the field, and mentions the first stage in the
lifecycle of the .NET application discussed. Section II
describes certain aspects (advantages mainly) of the platform
we chose to implement the solution with, and section III
presents the application with its features and usage patterns
only to conclude with its possible future evolutions.

2. THE MEANS TO COMPLETE THE TASK

The goal we had set was to design and eventually implement
an application that was supposed to keep track of the activity
of the parking area of the company, given the fact that there
are a lot of employees coming in with their personal car but
even though they do not particularly appreciate being tracked,
we saw in this the perfect opportunity to test the application
for this stage of the development; we would then be able to
collect any feedback from the persons involved and modify
or eventually improve it to meet other requirements too.

Given the facts that the application is to run in an industrial
context, it has to rise up to corresponding standards,
concerning mainly the functionality and pay less attention to
having a visually appealing graphical interface, thus making
the use of web application technology more appropriate than
the traditional desktop approach. The platform of choice was
easy: the .NET Framework can provide classes and features
for almost any type of application an engineer can imagine.
This really is just a matter of preference and experience,
actually, as the alternatives (Java and PHP) can be used to
reach the same goal. The reasons we chose .NET are based
on the fact that Microsoft have placed considerable efforts
into Visual Studio development as easy as possible (having
taken the Rapid Application Development they invented to
perfection), thus allowing the developer more chances to
concentrate on the actual task to complete instead of other
aspects and last, but not least, the prior experience of the
authors.

Another feature we appreciated about developing with Visual
Studio is the possibility to see almost immediately how the
changes to the code are expressed in the interface. In order to
properly present the .NET Framework we have to mention
from the beginning that it is an alternative to create managed
code, and not binary executables - .exe files – and that means
code which cannot run unless we have the .NET Runtime
installed on the computer the application is run. In the case of
web applications all we need is a regular browser to access it,
and we can also run it directly from Visual Studio, hosted by
the built-in development server (MacDonald et al, 2007).

A set of helpful features come from the C# language, which
has reached version 4.0, the same as the framework (LINQ,
introduced with the 3.0 version, generic types, the “partial”
keyword, setting of properties at runtime, delegates, and
others). Of course, using the latest platform available does
have its advantages, regarding the language improvements
and general programming paradigm advances.

Like all the modern preferred programming languages, C#
can interact with relational database management systems,
operate on files and ports, compress data, facilitate threaded
programming, security and working with XML. The
execution speed, considering the fact that it is managed and
not binary code is quite sufficient for most applications. Of
course, programming is an art and optimizations are still
welcome in some cases, in spite of contemporary hardware
resources (MacDonald et al, 2010).

3. THE APPLICATION ARCHITECTURE AND
FEATURES

Following programming best practices we designed the
application to be a typical 3 tier one. As it is already known,
this paradigm stands for separating the architecture into three
layers (hence the name): the data layer, the presentation and
the application layer. As the layers do not need explaining we
shall simply state that for the data layer we used the
Microsoft SQL Server Express version to host our data, and
that the code for the presentation and the actual business
logic were separated. We used most of the security features
of the ASP.NET framework, for example roles, a
membership provider and username/password login
authentification.

We designed the application to be used by the gatekeeper at
the entry point of the parking area, who has the right
credentials to login and operate on the application (manager
accounts). After the authentication, which takes place in the
welcoming page of the application, the user sees the page in
Fig. 1, which gives him the possibility to insert the data about
the drivers and their cars in the database. We built a database
schema and the corresponding tables which can be seen in
figure 7. When a car comes to the front gate, the gatekeeper
must retain data about the make and model of the car, its
driver, phone number and its licence plate number (additional
data can be stored, of course, but is sufficient for this stage).

Fig. 1. Inserting information about a car and its driver

The data is inserted into the database and then the gatekeeper
proceeds to the next page of the application, which can be
seen in Fig. 2. Here we can see an “all spaces free” view of
the application immediately after the login (the light green
colour has another significance that of optimal choice zones
for parking the next car). Of course, it will become similar to
what we see in Fig. 3 as soon as the gatekeeper clicks on any
spot that he chooses from the area. It is important to mention
that the first one can always be randomly chosen, and the
following ones can be chosen in accordance with the
recommendations made by the algorithm which presents a
realtime view of the parking lot to the user of the application.

We denoted with the dark green colour the suboptimal choice
zones, as calculated by the algorithm and with light green the

optimal ones. Of course a red spot (cell) means an occupied
space. It is obvious that the interface is very easy to use, thus
reducing the probability for human error in the process of
choosing free parking spots. In order to have a parking spot
occupied we first have to introduce the drivers in the database
dedicate to them (practically representing a drivers list) and
only then we can check the checkbox corresponding to the
one we currently assign a parking space to. The application
will not occupy the space unless the line corresponding to the
driver is checked and the driver has been inserted in the
database before, which is a common sense security feature.

Fig. 2. An initial view of the interface, with all spaces free

Fig. 3. Optimal and suboptimal areas for a single spot
occupied

In Fig. 4 we can see a more realistic view of the situation, as
the parking area is free only in the early hours of morning;
the flow of cars is mainly inbound in the time interval of 7
and 8 in the morning and mainly outbound after 5 o’clock in
the afternoon. The application was built with the ability to
report the situation to the management by exporting an Excel
file, which is easy to do, as can be seen in Fig. 5, by pressing
the “Export” button.

Fig. 4. View of the parking lot with more spaces occupied

Other types of reports containing statistics can also be
created, in case there is a problem; these modifications will
have to stand the test of time, however, as it will tell if they
are necessary or not, given the fact that the Excel file is a 100
% accurate view of what the gatekeeper sees, with the
additional calculation power of the Excel environment. Every
space, free or occupied, is represented as a cell in the
exported spreadsheet, as can be seen in Figure 6.

Fig. 5. The situation can be exported to Excel

Fig. 6. Aspect of the exported Excel 2003 file (.xls file)

The database with two tables (FreeParkingspace and
OccupiedSpaces) has been designed with the necessary
constraints (primary and foreign keys) linking the tables
which represent the entities involved in the process, such as
users, roles, schemas, cars, drivers, free parking spaces and
occupied parking spaces. All the database structure was
captured in Fig. 7.

Fig. 7. The structure of the database

4. CONCLUSIONS

This paper deals with an alternative manner of managing
inward and outward transports of the Ford Motor Company
plant in Craiova, but may also be implemented in other

companies; it can be modified to act as a decision support
subsystem. It also reduces costs by eliminating the need of
sensors to keep track of the cars; the management is done
purely in software with the help of a database.

The space optimization problem can be expanded to the
management of fixed and mobile assets, such as buildings
and vehicles, with the help of Geographical Information
Systems, as in (Space Utilization Optimization, 2009) but
that is for the moment beyond the scope of the paper and the
original goal.

In the future the application may require more elaborate
architecting, such as using the MVC pattern, as an alternative
to Webforms Development and it could also include
workflow characteristics.

REFERENCES

http://stackoverflow.com/questions/2828954/optimizing-a-
parking-lot-problem-what-algorithims-should-i-use-to-
fit-the-most-a

Zoghi, B., Singhal, R., Fink, R., Jung, Y. (2006). RFID
Solutions: Parking Optimization and Customer
Satisfaction, Proceedings of the 2006 IJME -
INTERTECH Conference.

Environmental Systems Research Institute, Inc., 2009, 380
New York St., Redlands, CA, “Space Utilization
Optimization”, an ESRI white paper.

Chen, M., Hu, C., Chang, T., (2011), The research on optimal
parking space choice model in parking lots, The 3rd
International Conference on Computer Research and
Development (ICCRD), vol 2, page 93, 11-13 March.

Meiping, Y., Ruisong, Y., Xiaoguang, Y., (2008), On
Modeling on Scale of Public Parking Lot Based on
Parking Choice Behavior, International Conf. On
Intelligent Computation Technology and Automation
(ICICTA), 20-22 oct., vol. 2, pag. 259.

MacDonald, M., Szpuszta, M., Pro ASP.NET 3.5 in C# 2008,
second edition, Apress, 2007.

MacDonald, M., Freeman, A., Szpuszta, M., Pro ASP.NET
4.0 in C# 2010, fourth edition, Apress, 2010.

