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Abstract: The advent of modern communications and the low cost of some kinds of devices have 
resulted in a desire to equip elderly peoples' homes with sensors to monitor their activities and be 
forewarned of abnormal situations. In such an environment, sound may represent a rich source of 
information that can be exploited and this is considered as one of the most ergonomic and least 
intrusive solutions. However, this solution is often adversely affected by noise that is to say, 
mostly sounds of a type not taken into account in the creation of this system. Several methods 
were used to make it possible to classify sounds. In this work we tested Support Vector Machines 
to classify sounds in a domotic environment. 
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1. INTRODUCTION 

Sound classification is a problem of pattern recognition 
where one aims to distinguish the class of a given sound 
from other classes. In a domotic environment, there are 
many kinds of daily sounds which require detection in 
order to obtain information about the status of elderly 
people and their activities. There are also some sounds 
considered as noise that the system should ignore. Speech 
is considered as one of the most informative sounds, it is 
by far the most important class for a telemonitoring 
system. In fact, a speech signal can carry useful 
information like emotions and may contain a distress 
expression. This is what has motivated researchers to 
attempt sound classification in a hierarchical fashion as in 
Istrate et al. (2009) where speech was first distinguished 
from other sounds before being transmitted to a second 
classification engine. 

This research work take place in the framework of the 
Sweet-Home project which searches to provide a domotic 
HMI based on direct/indirect Speech/Sound recognition. 
The aim of this project is the safety of the persons and of 
goods using audio techniques. The interesting sound 
classes for this project are everyday life sounds (door 
clap, phone ring, dishes sounds, etc.) and abnormal 
sounds (screams, glass breaking, object falls, etc.). 

The problem of sound classification can be compared to 
that of speaker identification as both are a multiclass 
pattern recognition task and rely on extracting and 
modeling the relevant features from the signal in order to 
differentiate them. In recent years, several statistical 
methods which have been successfully used for speaker 

identification, for example: Hidden Markov Models 
(HMMs), Gaussian Mixture Models (GMMs) Rose and 
Reynolds (1995) and Dynamic Time Warping (DWT), 
were used for sound classification. Previous work of the 
ANASON team applied GMMs to sound classification 
following the model described above. A combination of 
two or more classification methods was also used like in 
Bourouba et al. (2007) and Zhou et al. (2007). 

Support Vector Machines (SVMs) is a hyperplane based 
method that has gained increasing attention in the pattern 
recognition community over the last few years and has 
been successfully applied to tasks like speaker 
identification and verification, and face recognition. From 
a theoretical point of view, this discrimination method is 
quite robust. For a linear classification problem, it 
attempts to choose a hyperplane that best separates data 
points from two classes. Moreover, it has been shown to 
perform a non-linear classification with accuracy via the 
use of appropriate Kernel functions. This makes the 
SVMs extremely valuable for the task of sound 
classification. 

2. SUPPORT VECTOR MACHINES 

SVMs belong to the family of binary classifiers. That 
means that an SVM attempts to assign one of two labels 
to data points from two distinct classes. The goal is to 
assign the exact label to each point given a set of labelled 
examples used to train the classifier. 

The basic idea behind this method is to find a decision 
surface hyperplane which maximizes the margin between 
positive and negative examples. This implements the 
principle of structural risk minimization (SRM) (Burges, 



     

1998) (Fig. 1). The hyperplane 0H and the points which 
are mapped on it satisfy: 

       0=+⋅ bxw     (1) 

The vector w  is the normal to the hyperplane and b is the 
bias of the hyperplane from the origin. Given a set of 
N training examples ),( ii yx  where are the points, and 

{ }1,1 +−∈iy are the associated labels, we need to find the 
maximum margin subject to the constraints: 

1≥−⋅ bxw i  for  1=iy , and  

1−≤−⋅ bxw i  for  1−=iy , which can be written as: 

           ibxwy ii ∀≥−+⋅ ,01)(     (2) 

We find that the distance between the two margins 1H  
and 2H  is w2 . Thus, the problem can be stated as 

minimize w  subject to (2). 

The problem can be put as a quadratic programming 
problem as follows: 
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where the si 'α  are the Lagrange multipliers. 

In Fig. 1 it can be seen that few examples can be found on 
the margins 1H  and 2H . These are the support vectors 
and their associated si 'α  are greater than 0. 

 
Fig. 1. Example of a linear classifier. 

In most cases the data examples are not perfectly 
separable. In other words, there exists no hyperplane that 
can separate all points without making any erroneous 
classification. This has motivated to introduce slack 
variables, iξ , to allow some degree of misclassification 
for some examples while still maximizing the distance to 
the nearest cleanly separated examples. The problem 
becomes: 

Minimize: 
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subject to ibxwy iii ∀−≥+⋅ ,1)( ξ , 

where C is the penalty parameter of the error term. 

The above theory works well as long as the data is 
linearly separable. In many problems, including sound 
classification, the data is far from being linearly 
separable. To deal with such problems one solution is to 
map the data into an extremely high dimensional feature 
space so that a linear separation becomes possible. 
However, dealing with data from a high dimensional 
feature space can easily lead to high computation costs 
(Picone and Ganapathiraju, 2000). This can be avoided by 
using Kernel functions. Typically used Kernel functions 
are (Rose et al., 1995): 

Linear:  yxyxK ⋅=),(      (5) 

Polynomial: pcyxyxK )(),( +⋅= γ     (6) 

Gaussian RBF: )exp(),( 2yxyxK −Γ−=    (7) 

The final decision function takes the form: 
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and the sign of the function f  gives the label of the input 
vector x . 

3. APPLICATION TO SOUND CLASSIFICATION 

3.1 Multiclass classification 

In most cases a system has to deal with more than two 
classes of sounds. However SVM is a binary 
classification method. Although there exists a variant of 
SVM which can do multiclass classification, most 
researchers prefer splitting the problem into multiple 
binary problems and then using a binary classifier for 
each problem. There are two schemes most commonly 
used to do this; the one-to-all scheme and the one-to-one 
scheme. In the one-to-all scheme, C classifiers are created 
to represent C classes. Each classifier is trained by 
labeling examples from one class as 1+ and examples 
from all the other classes as 1− . An input example is thus 
evaluated using all the classifiers and is attributed to the 
class that yields the best distance. In the one-to-one 
scheme, a classifier is trained for each couple of classes 
and the final decision is achieved using a tree structure or 
a Directed Acyclic Graph (DAG) (Hyun-Chul et al,  
2003; Seong-Whan and Byun, 2003). 

In most cases, a sound consists of more than one vector 
(i.e. frame). In Zhaohui et al. (2006), where SVMs are 
applied to speaker identification, the score of an utterance 



     

of N  vectors is simply the arithmetic mean of the scores 
of the vectors it contains: 
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Nevertheless we can also classify a sound using a 
majority voting on its vectors. This technique allows 
avoiding the influence of only some vectors misclassified. 

Another way to use SVMs is to use an ensemble of 
classifiers. This may be very fruitful for sound 
classification especially when data is noisy. The idea is to 
obtain a set of classifiers for the same classification 
problem (Zhaohui et al., 2006). This can be achieved 
using bootstrapping or boosting (Hyun-Chul et al., 2003). 

3.2  Acoustical parameters 

The SVM are not applied directly on the time signal but 
on spectral extracted vectors named acoustical 
parameters. The acoustical parameters can be the MFCC 
(Mel Frequency Cepstral Coefficients), LFCC (Linear 
Frequency Cepstral Coefficients), LPC (Linear Prediction 
Coefficients), LPCC (Linear Prediction Cepstral 
Coefficients), etc. In this paper we have used LFCC 
because are more adapted for sound with high frequencies 
components. LFCCs are cepstral coefficients commonly 
used in speaker/speech recognition systems.  

Their success is due to their ability to represent the speech 
amplitude spectrum in a compact form. They are 
commonly calculated as shown in Fig. 2. 

 
Fig. 2. Steps to derive LFCC. 

In the first step the signal is divided into frames, usually 
by using a rectangular windowing function at fixed 
intervals and overlap. Thus, each frames can be 
considered as a cepstral feature vector. The discrete 
Fourier Transform is then applied to each frame and 
triangular filter of uniformly spaced frequency bins are 
applied (see Fig. 3). The logarithm is computed on each 
output energy of each triangular filter. The components 

are finally decorrelated using the Discrete Cosine 
Transform. This has the advantage to reduce the final 
number of features in each vector. 

 
Fig. 3. Uniform Frequency scale. 

4. FIRST EXPERIMENTS 

In order to experiment with SVMs for sound classification 
we have used the SVM-light library (Joachims, 1998). We 
first made a test on a part of the dataset created by the 
ANASON team. The dataset consists of seven categories 
of sound related to daily human activities. Table 1 shows 
the classes used in these experiments. 

Table 1. Classes of sound from the dataset. 

Sound category  Number of files 
Cough 42 
Door bell  14 
Laugh  10 
Sliding door  19 
Sneeze  26 
Snore  20 
Yawn  21 

 
These sounds are 16kHz, 16 bits wav files. For this test, 
24 order LFCCs (Linear Frequency Cepstral coefficients), 
energy and Zero Crossing Rate (ZCR) features were used. 
The frames were 16 ms of length with an overlap of 50%.  
Before explaining how to calculate LFCCs we first 
introduce briefly MFCCs (Mel-Frequency Cepstral 
coefficients. 

The multiclass scheme used is the one-to-one, so a 
classifier is trained for each pair of classes. For each class, 
50% of files are used for training and 50% for testing. To 
attribute a sound to a class, we first used the method 
consisting of calculating the sum the scores obtained by 
its vectors and then and then choosing the class according 
to the sign of the sum. This strategy yielded poor results. 
We then adopted a majority voting strategy which 
improved them moderately. 

5. RESULTS 

The proposed algorithm was evaluated on the data base 
through the good classified rate. The accuracy of the 
whole database is obtained by dividing the number of 



     

correctly classified files by the total number of files. 
Table 2 shows the results obtained. 

The method used is time consuming because of the 
nonlinear kernel (RBF in our case) where almost all 
training examples are retained as support vectors. This 
results in huge models. 

In order to better use SVMs and improve the 
performances, many methods can be used to train a model 
like the use of hold-out set or cross-validation (Platt, 
1999). In this work we used the techniques described in 
Chang et al. (2003) which consist in scaling, grid search 
and cross-validation. 

The goal of scaling is to constraint each feature value to 
be in a specific range, for example [ ]1,1 +−  or [ ]1,0 . 

This has the advantage to avoid features with greater 
values dominating those smaller values and to avoid 
numerical difficulties during calculation (Chang et al., 
2003).  A grid search is used to find the couple of C and 
Γ , which achieve the best accuracy on training data. 
Many combinations of these two parameters are thus used 
to train and test a classifier. One way to do this is to split 
the training data into two parts, train a classifier using one 
part and use the rest of data to determine which values of 
C  and Γ allows for better performance. 

A better way to determine the best parameters is to use 
cross-validation. In n-fold cross-validation the straining 
dataset is split into n subsets of equal size. Each subset is 
then used to test the classifier trained on the other subsets. 
In our experiments we used 5-fold cross validation. Table 
3 shows the results obtained after using the procedures 
above. It can be seen that these results outperform the 
previous one.  

Furthermore, in table 3, and contrary to table 2, the 
performances of the two strategies are almost comparable. 
This fact is due to scaling the data before training and test. 
We have also noticed that the models obtained after 
scaling the data are fairly of smaller size than those 
obtained with non scaled data. This may be very 
interesting for real time systems as the time required to 
classify one vector is closely related to the size of the 
model. 

Table 2. The scores obtained with the first tests using two 
strategies of classification 

 Classification strategy 
 Score sum Majority voting 
Cough  0.33  0.57 
Door bell 0.57  1.00 
Laugh  1.00 1.00 
Sliding door 0.00 0.00 
Sneeze 0.15 0.23 
Snore 0.40 0.80 
Yawn 0.18 0.18 
Whole dataset 0.31 0.48 

Table 3. The scores obtained after scaling the data and 
using cross-validation 

 Classification strategy 
 Score sum Majority voting 
Cough 0.90 0.95 
Door bell 1.00 1.00 
Laugh 1.00 1.00 
Sliding door 0.20  0.00 
Sneeze 0.38 0.38 
Snore 0.70 0.70 
Yawn  0.18 0.18 
Whole dataset 0.61 0.60 

 
6. CONCLUSIONS 

This paper presents an application of SVMs to classify 
sound in a domotic environment. The sound classification 
is a multiclass problem but SVM are binary classifiers; 
two techniques was used one-against-one and              
one-against-all. The use of techniques like scaling and 
detecting the best parameters by using cross-validation 
allows improving the performances. Although the first 
obtained results are encouraging, there are still several 
methods that can be used to better exploit SVMs and deal 
with the noise like the use of ensemble of classifiers with 
bootstrapping or boosting. 
Future tests will aim to evaluate the noise influence on the 
SVM recognition performances and also the possibility to 
combine GMM with SVM in order to obtain a better 
system through score fusion. 
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