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Abstract: In this paper a combination of the feedback linearizing control technique and Glover-
McFarlane control method is applied for the control of a synchronous motor. The use of feedback 
linearization requires the complete knowledge of the nonlinear system. In practice, there are many 
processes whose dynamics is very complex, highly nonlinear and usually incompletely known. To 
improve robustness, it may be necessary to modify the exact linearization controller.  First, we 
apply the method of nonlinear control and state feedback linearization to synchronous motor 
model and we obtain a nonlinear control law. This law, aggregated with our nonlinear system, 
achieves input-output linearization and in the case of multivariable approach, the nonlinear control 
law achieves also decoupling. Then, Glover-McFarlane H∞ design is used with the goal of 
increasing robustness of the existing controller. Finally, some simulation results are included to 
demonstrate the performance of these controllers and the results are compared with the classical 
dq vector control. 
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1. INTRODUCTION 

A method largely used for the control of nonlinear 
systems is to calculate a linear controller for the linear 
approximation of the nonlinear system around an 
operating point. This kind of control works in a small 
neighbourhood of the operating point, and when the 
system is far from this point, the linear controller will not 
have the desired behaviour. Thus, the feedback 
linearization is a good technique because the nonlinear 
system is transformed into a linear system and only then 
the linear controller is applied. Therefore, a controller 
associating feedback linearization and linear control is 
working in any point, not only in a small neighbourhood 
of the operating point. 

The robust feedback linearization is a new form of 
feedback linearization which gives a linearizing control 
law that transforms the nonlinear system into its linear 
approximation around an operating point, causing only a 
small transformation in the natural behaviour of the 
system which is desired in order to obtain robustness. 

The control of synchronous motors has been widely 
investigated in a number of works under various points of 
view (Cerruto et al., 1995; Caravani et al., 1995; Di 
Gennaro et al., 1994). One of the most frequently used 
mathematical descriptions is expressed in the (d, q) frame 
and the coupling between the angular velocity and the 
electrical quantities results in a bilinear model with the 
angular velocity as a natural output to be controlled. If 

model parameters are perfectly known, non-linearities can 
be canceled by proper selection of state feedback controls 
via exact feedback linearization. 

Several techniques from linear and nonlinear control 
theory have been applied to the problem of robust 
feedback linearization: Lyapunov redesign method, 
sliding modes, the H∞ approach, Glover-McFarlane H∞ 
design, etc. 

Our goal is to combine the exact feedback linearization 
control technique and Glover-McFarlane design method 
in order to control a synchronous motor with 
nonlinearities and parameter uncertainties. The method of 
nonlinear control and state feedback linearization is 
applied to synchronous motor model and it is obtained a 
nonlinear control law. This law, together with our 
nonlinear system, achieves input-output linearization and 
in the case of multivariable approach, the nonlinear 
control law achieves also decoupling. Then the Glover-
McFarlane H∞ design is applied, with the goal of 
increasing robustness of existing controllers without 
significantly compromising performance.  

The paper is organized as follows: in Section 2, the 
nonlinear mathematical model of the synchronous motor 
is presented together with two linearized models obtained 
by classical feedback linearization method and, 
respectively, robust feedback linearization method. In 
Section 3, first, the Glover-McFarlane H∞ design method 
is applied in order to robustify the controller obtained by 



 
 

     

 

feedback linearization and pole placement method. Then, 
some simulation results are presented in order to compare 
the robustness and performances of the designed 
controllers with those obtained with the classical dq 
vector control. Some concluding remarks are presented in 
Section 4. 

2. MATHEMATICAL MODELS OF SYNCHRONOUS 
MOTOR 

2.1 Nonlinear Mathematical Model 

The mathematical model of a permanent magnet 
synchronous motor, which is expressed in the so-called 
(d,q)-frame, and deduced from the application of the Park 
transformation, can be written as follow (Caravani et al., 
1998): 

 
2

1
( ) ( )i i

i
x f x g x u

=

= + ∑& , (1) 

 2,1 );( == jxhy jj , 

in which )(),(),( 21 xgxgxf  are smooth vector fields 

 [ , , ]T
d qx i i= ω ,  ],[ qd

T uuu =  

 ( )

d q

q d

q

R i p i
L
R pf x i p i
L L

p f mi
j j j

⎡ ⎤
− + ω⎢ ⎥

⎢ ⎥
φω⎢ ⎥= − − ω −⎢ ⎥

⎢ ⎥
φ⎢ ⎥− ω −⎢ ⎥⎣ ⎦

 (2) 

 1 2
1 1 0 0 ;  0  0T Tg g
L L

⎡ ⎤ ⎡ ⎤= =⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
 

 dihy == 11  

 2 2y h= = ω  

where R is the stator windings resistance, L the 
inductance, φ is the flux of the permanent magnets, id, iq 
are the currents and ud, uq are the applied voltages, and p 
is the number of pole pairs; ω denotes rotor angular 
velocity, j is the rotor moment of inertia, f is the viscous 
friction coefficient and m is the load torque. 

In angular velocity control problems typical outputs of 
interest are the current id and the angular velocity ω. In 
fact, the electromagnetic torque is generated by the iq 
component of the current. Therefore, forcing the id 
component to zero tends to align the current vector along 
the q direction. 

This optimizes the use of all the available current for 
torque producing purposes. 

2.2 Feedback Linearizing Methods 

The multivariable nonlinear system we consider is 
described in state space by equations of the following 
kind: 
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in which f(x), g1(x), g2(x),...., gm(x) are smooth vector 
fields. 

The problem of exact linearization via feedback and 
diffeomorphism consists in transforming a nonlinear 
system (3) into a linear one using a state feedback and a 
coordinate transformation of the system’s state. 

We introduce now the Lie derivative of a function 
RRxh n →:)(  along a vector field 

T
n xfxfxf )](),...([)( 1=  

 ∑
= ∂

∂
=

n

i
i

i
f xf

x
xhxhL

1
)()()(  (4) 

Definition. A multivariable nonlinear system of the form 
(3) has a relative degree } ,...,{ 1 mrr  at a point 0x  if: 

(i) 0)( =xhLL i
k
fg j

 (5) 

for all mj ≤≤1 , for all mi ≤≤1  for all 1−< irk  and 

for x  in a neighbourhood of 0x , 

(ii) the mm×  matrix 
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is nonsingular at 0xx = . 

Theorem. Let be the nonlinear system of the form (3). 
Suppose the matrix )( 0xg  has rank m. Then the State 
Space Exact Linearization Problem is solvable if and only 
if 

(i) for each 10 −≤≤ ni , the distribution Gi has constant 
dimension near 0x ; 

(ii) the distribution 1−nG  has dimension n ; 

(iii) for each 20 −≤≤ ni , the distribution iG  is 
involutive. 

1) Classical Feedback Linearization: The classical 
feedback linearization is accomplished by using a 
linearizing control law of the form 



 
 

     

 

( , ) ( ) ( )c c cu x w x x w= α + β , where w is a linear control, 
and a diffeomorphism ( )c cx x= φ , with 
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The linearized system is: 

 wBxAx cccc +=&  (7) 

where Ac and Bc are the matrices of the Brunovski 
canonical form.  

2) Robust Feedback Linearization: The main difference 
between the robust feedback linearization and the 
classical one is that the linearized system has the form 

 vBxAx rrrr +=&  (8) 

with (0)r xA f= ∂  and )0(gBr = , which corresponds to 
the linear approximation of the nonlinear system (3). 

The robust feedback linearization is accomplished by 
using a linearizing control law of the form 

( , ) ( ) ( )u x w x x v= α + β , where v is a linear control, and a 
diffeomorphism ( )rx x= φ , with 

 1( ) ( ) ( ) ( )c c cx x x LT x−α = α + β φ  

 1( ) ( )cx x R−β = β  

 1( ) ( )cx T x−φ = φ  (9) 

 (0) (0)c cL A= − ∂ α  

 (0)x cT = ∂ φ , )0(1−= AR  

The functions ( )xα , ( )xβ , and ( )xφ  satisfy 

 (0) 0x∂ α = , (0) Iβ = , and (0)x I∂ φ =  (10) 

 
2.3 Linearized Models of the Synchronous Motor 

1) Classical Feedback Linearized Model: We consider as 
output variables 

 diy =1  

 ω=2y  

Easy calculus show that the matrix for mathematical 
model of the synchronous motor is nonsingular and the 
relative degree is }2 ,1{} ,{ 21 =rr . 

For the system given by (1), the decoupling matrix is 
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Now, the input-output system can be rewritten in the 
form: 
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Because the decoupling matrix (11) is not singular, it is 
possible to design a nonlinear input 
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The functions for the classical linearizing feedback 
control law are 

 ( ) 2
d q

qc
q d

Ri Lpi
Lfix LfRi Lpi p

j jp

− ω⎡ ⎤
⎢ ⎥α = ⎢ ⎥+ ω + φω + −
⎢ ⎥φ⎣ ⎦

, 

 ( )
0

0c

L
x jL

p

⎡ ⎤
⎢ ⎥β = ⎢ ⎥
⎢ φ⎥⎣ ⎦

, ( )
d

c

q

i
x

p i f
j

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥φ = ω
⎢ ⎥

φ − ω⎢ ⎥
⎢ ⎥⎣ ⎦

 

In the new coordinate we have 
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The state feedback (13) transforms this system into a 
system whose input-output behavior is identical to that of 
a linear system having transfer function matrix of the 
form 
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2) Robust Feedback Linearized Model: The functions for 
the robust linearizing control law are ( )xα , ( )xβ , and 



 
 

     

 

( )xφ  calculated using the functions ( )c xα , ( )c xβ , and 
( )c xφ  given before and the matrices 
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3. ROBUST CONTROL DESIGN 

Imposing on the system (15) an additional feedback of the 
form  

 )( 11101 refyycv −−=  (16) 

 22122202 )( ycyycv ref &−−−=  

then, the obtained system has a linear input-output 
behavior, described by the following diagonal transfer 
function matrix 
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3.1 Glover McFarlane Control Design 

We consider the structure of the control system shown in 
Fig. 1, where are implemented the control laws (16) and 

1rK , 2rK  are the robustifying controllers ( 1sG , 2sG  are 
the nominal shaped plants). 

 

 

 

 

 

 

 

Fig. 1. The control loop. 

In this design, the model uncertainties are included as 
perturbations to the nominal model, and robustness is 
guaranteed by ensuring that the stability specifications are 
satisfied for the worst-case uncertainty. Here, since the 
system is decoupled, we design separately the two 
robustifying controllers. The method described next 
[McFarlane and Glover 1992] is applied to the nominal 
shaped plants Gs1, Gs2, but the indices are neglected. 

Let MNGs /=  be the normalized coprime factorization 
of the nominal shaped plant.  

The normalized coprime factor uncertainty 
characterization is given by 
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The following steps yield the optimal controller that 
assumes a state-space (A,B,C) available for the transfer 
function sG : 

1) Obtain Z by solving the algebraic Riccati equation 
(ARE) 

 0=+−+ TT BBCZZCZAAZ  (19) 

2) Obtain X by solving the ARE 

 0=+−+ CCXXBBXAAX TT  (20) 

3) Compute the maximum possible ε  for the given 
nominal shaped plant 

 2/1
max ))(1( −+= XZρε  (21) 

where ρ denotes the spectral radius. Hence, in this design 
scheme there is no need for an explicit characterization of 
uncertainty. The method detects and solves for the worst-
case scenario. 

4) The robustness margin ε  is chosen to be slightly less 
than maxε . Let εγ /1= . 

5) The state-space realization of the robustifying 
controller rK  is given by  
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where XBF T−=  and XZIL +−= )1( 2γ . 

An important feature of this algorithm consists in the 
similitude of the loop transfer functions, before and after 
robustification.  

 
3.2 Simulation Results 

The simulation was performed for a synchronous motor 
having the following parameters: 

c10 
 

Exact  
Linearized  

Model c20 
 - 
+

+ 

- 

Kr1 

Kr2 

sc21 

- h1(x)=id

h2(x)=ω
+ 

Gs2 

Gs1 



 
 

     

 

( ) ( ) ( )3 30,6 ; 1,2 10 H ; 1,4 10 Nms ;R L f− −= Ω = × = ×  

( ) ( )3 22,5 10 Kgm ; 0,12 Wb ; 4j p−= × φ = =  

We are testing the control performance for step changes 
in the reference. The simulation was done for the equation 
model (1) and the nonlinear control law (9), (12). The 
design parameters are computed using a pole-placement 
design technique.  

For load torque m = 0, y1ref = 0 and a series of step 
references for y2ref  (30 rad/sec at start, 70 rad/sec at 0.5 
sec and 90 rad/sec at 1.5 sec), the evolution of variables 
ud, uq, id, iq, ω and ωref is presented in Fig. 2. It can be 
seen that the id current tends to zero and the angular 
velocity ω achieves each time the reference after less than 
0.1 sec. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. The results of the simulation for the classical 
feedback linearized model. 
 

The results of the simulation for the robust feedback 
linearized model are plotted in Fig. 3. 

We notice the very good behavior of the control system. 
The two controlled variables are following the 
corresponding reference values with high accuracy. The 
speed has no override thanks to the proper regulation of 
the active current iq. At its turn, this current is smoothly 
controlled by the corresponding voltage component, uq. In 
the same delicate manner, the reactive current id is 
maintained rigorously at its null reference value. 

The proposed control strategy is to be compared with the 
classical dq vector control of the PMSM. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. The results of the simulation for the robust 
feedback linearized model. 
 

The most basic such control imposes the d-axis 
component of the current to zero (Vas 1990, Ivanov 
2008b). If a current source inverter is used for supplying 
the motor, the reference values of the two current 
components are transformed from the Park reference to 
the fix one, the resulted currents being the reference 
values for the inverter. When a voltage source inverter is 
used for supplying the PMSM, the reference values of the 
voltages result as functions by the necessary currents. If 

steady state operation is considered ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= 0

dt
diq , the two 

components result: 

 dref q m qrefu pL i= − Ω , 

 qref a qref T mu R i K= + Ω  

By using the models previously developed by the authors 
(Ivanov 2008a, b) and imposing the same profile for the 
reference speed, for the same motor, the resulted dq 
voltages, currents and rotor speed are the one plotted in 
Fig. 4. 

From Fig. 4 one can note the very good dynamical 
behavior, but the currents id and iq are greater than in the 
Fig. 2 and 3. 

The robustness of the proposed control law must be 
verified for alterations of the rated values of the motor 
parameters. An example is plotted in Fig. 5, where the 
stator resistance of the motor was increased by 20 %. 
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Fig. 4. The results of the simulation for the dq vector 
control. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. The results of the simulation for the robust 
feedback linearized model with increased stator 
resistance. 
 

Such alteration can occur naturally during operation, due 
to the increasing of the windings temperature. 

One can notice that the behaviour of the system is still 
very good, due to the robust control loop. 

4. CONCLUSIONS 

It can be seen that, qualitatively, the results obtained with 
the proposed control strategy are close by the ones 
obtained with the classical dq control, which confirm the 
correctness of the proposed strategy. The results can be 
improved quantitatively by a more proper pole allocation. 
Further work will be made for testing the robustness 
properties, in real time, on an experimental bench. 
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