

Generating Wrappers for Semi-Structured Web Pages

Ştefan Udriştoiu*, Anca Ion*

*University of Craiova, Faculty of Control, Computers and Electronics,
Software Engineering Department, Bvd. Decebal, Nr. 107, 200440, Craiova, Dolj, ROMANIA

(e-mail:sudristoiu@software.ucv.ro)

Abstract: This paper presents a tool suit used to improve the activity of wrapper development for
a meta-search engine. When a new type of source of information is to be added in the system a
concrete wrapper is to be written. The Wrappers’ Editor is a visual tool that helps editing wrapper
representation files. The wrapper representation is visualized as a tree and on the hard disk is
stored as an xml file, using Wrapper Description Language (WDL). The tools consist from a
compiler which generates Java classes, a specialized editor for the WDL, an interpreter used also
as a debugger and as a platform for the last tool of the suite, which generates extraction rules
starting from user annotations.

Keywords: Compilers, Finite automata, Formal specification, Information retrieval, Information
integration, Problem-oriented languages, Rapid programming, Rule-based systems, Software
productivity, Software tools.

1. INTRODUCTION

A web meta-search engine tries to make things uniform
for the user with respect to a wide range from Web search
engines and standardized Z39.50 databases to proprietary
SQL servers or Integrated Library Systems. The end user
formulates the query in a single format, irrespective of
any data source or schemas, and obtains results in a
uniform way, tailored to its needs.

When a new type of source of information is to be added
in the system a concrete wrapper is to be written. This
module deals with native issues regarding the source: both
query and retrieval. In order to be inserted into the system
it has to be wrapped in a module that handles the
translation to and from uniform items to native items.

Implementing a wrapper can be complicated and time
consuming, but some of the coding involved in wrappers
can be automated. Hence, one important goal is to
automatically or semi-automatically generate wrappers
from high level descriptions of the information processing
they need to do.

Using any automated process to develop and maintain
wrappers will reduce the level of programming expertise
that is required for the persons involved in these tasks and
also will reduce the time needed to finalize them.

Another objective for an automated process is to eliminate
the programming errors associated especially with
monotonous development.

This paper describes a suite of tools developed to assist
creation and maintenance of wrappers for HTTP sources.
The tools were developed incrementally. In the first stage
we developed a language, called WDL, flexible enough to
represent all wrappers and to make easier the task of

creating new wrappers. In the second stage a compiler
was implemented, which transforms the WDL
representation into a Java class. In the next step, a
specialized editor was built to facilitate programming in
the WDL. In this stage a good understanding of the HTTP
protocol along with the capacity of interpreting the
sniffer’s output for the retrieved pages is still required as a
level of expertise. The time-consuming task of identifying
and parsing the elements will still be made manually by
human analyzes. For debugging purposes, in the fourth
stage we implemented an interpreter capable of executing
accurately the wrappers in WDL form. The last stage
consists in automating as much as possible the WDL
creation and maintenance, including automated detection
of faulty wrappers.

In the ideal case scenario, a representation of the wrapper
in WDL is created via an interactive process supervised
by a human designer and then the result is compiled into a
Java module. The reason for this is that a real meta-search
engine is built for speed, without any compromise
regarding the recall and precision. The value for both
those measures has to be 100%. The recall and precision
are defined as in (Zhao et al., 1998):

t

c
N
E

recall = (1)

and

t

c
E
E

precision = (2)

where Ec is the total number of correctly extracted
records, Nt is the total number of records and Et is the
total number of records extracted.

This last step, compiling the wrapper to java form, is what
distinguish this tools from other similar commercial

products, Kapow RoboSuite (Kapow, 2006), Lixto
(Baumgartner et al., 2001; Gottlob et al., 2002) or non-
commercial, LAPIS (Miler, 2002), Jedi (Huck et al.,
1998).

Is different even from XRAP (Liu et al., 2000) because
our generated wrappers have the same aspect with those
written by a human programmer and the performance of
the XRAP system is unacceptable for an industrial
strength application. For a comprehensive survey of the
toolkits for generating wrappers see (Kuhlins and
Tredwell, 2003; Laender et al., 2002).

The paper is structured as follows. We start by describing
the parameters for the wrapper. In the next section we
present the structure of the language. In the forth section
we introduce the extraction rules used by the language
constructs from the Section 5. In the Section 6 we present
WDL instructions and in the Section 7, the compiler is
detailed. The paper ends with the conclusions and future
work.

2. CONFIGURATION PARAMETERS

The Java wrapper receives at startup a number of
predefined parameters:
• start – represents the index of the first record that will

be retrieved by the wrapper.
• perPage – the number of records that will be retrieved.
• query – this is the result of the XSLT translator which

does the conversion from a common query model to
the native source query.

• homeURL – this is usually the starting point for
crawling.

• searchURL – this is usually the point where the actual
search can start. It is used when the crawling can be
improved by skipping some http requests.

• userName – this is the parameter used to fill the
corresponding authentication field form. A similar
purpose has userPassword and userPin.

• databaseName – a selector for multi-database search
engines that can be used to designate more than one
database.

Additional parameters can be loaded using specialized
language constructs specifying the name of the parameter
and the source.

3. LANGUAGE STRUCTURE

The WDL was designed with a dual purpose: to be used
as a specialized wrapping programming language and to
permit an intermediary representation on which to build
other assisting tools.

The language is based on XML and has a structure
inspired by the development process. When writing a new
wrapper, a human programmer starts by downloading the
first page, usually containing the authentication form.
After downloading a page, she figures what information
needs to extract in order to be able to send the query,
select one or more specific databases, or a specific record
format. That is the authentication and crawling part and
could imply many http requests. For instance, to reach the

page containing extracted records for the Biblioline site
no less than 17 requests has to be made. So, the main
language construct is described using a STATE element
having a type attribute with value request. A request state
may contain:
 A CONDITION that validates all the actions of the

state.
 A HTTP_POST_REQUEST element node or a

HTTP_GET_REQUEST element node describing,
obviously, how to download a web page.

 A container for extractions.
 A container for markers, which will be described later.
 A WAIT_ONLY_FOR element. This is used for

optimization, specifying that the download will stop
after certain extractions are performed successfully.
This is possible because the web page is red slice after
slice, extractions being tried in between.

 A SAVE_PAGE_TO element, which contains the
name of the variable assigned with the downloaded
page.

Ideally, this should be enough but, often, different
computations have to be made beside requests, which are
contained by instruction states.

For debugging purposes, ASSERT nodes can be inserted
in any place, containing logical expression that always
must be true. Those conditions are used in detecting faulty
wrappers in an automated fashion.

4. EXTRACTION RULES

We use three types of rules: string rules, regular
expression rules and index rules. The rules can be mixed
but the string rules are those used in the overwhelming
majority of cases.

A string rule contains one or more strings to search for in
the html page and has the following attributes:

• Direction – specifies in which direction to search for
tags and can have, obviously, one of the values:
FORWARD or BACKWARD. The starting point for
the search is from where the previous rule has
finished. The start point for the first rule is usually
implicit but sometime can be specified, depending on
extraction type.

• Action – specifies what to do with the search pointer
after a tag was found. Can have one of the values:
NOTHING, SKIP, INCREMENT or DECREMENT.
Their meanings are: leave the search pointer at the
beginning of the found tag, move the pointer at the
end of the searched tag, move the pointer one
character right or move the pointer one character left.

• Finds – indicates what the rules searches for: the
beginning of the extracted region, the end or is an
intermediary step. The defaults are that the last rule
finds the end and the rule before that finds the start.

• Case – specifies if the string case is ignored or not.

• Type – if there are more than one tag to search for
then it specifies which tag will be chosen: the first
found, in the order that are added to the rule, the one
with the minimum index or with the maximum index.

Regular expression rules have almost the same form,
without the case attribute. There use is not recommended,
the reason being again the cost, in computation time.

The last type, index rules, is used even more rarely than
regular expression, usually to specify that the start or the
end of the extracted region coincide with the start or the
end of the searched area.

Other parameters that can be specified for a search, beside
start position, are: the source for the search and the index
limits. A rule is considered valid if it leaves the search
pointer within specified limits. In majority of cases those
parameters are implicit, for instance the source is
considered to be currently downloading page.

At a superficial glance, one can say that the extraction is
similar with STALKER (Muslea et al., 2001; Muslea et
al., 1998) but the structure of the WDL allows a lot more
flexibility.

5. EXTRACTION CONSTRUCTS

A very specialized form of extraction is that used for
extracting the estimate, i.e. an approximation for the total
number of records. This extraction element contains
usually only extraction rules, as described in the previous
section, and very rarely an extraction source and an
indicator to stop the wrapper if start parameter is greater
than retrieved estimate.

Another type of extraction is for “singleton” information,
which is named internally “extraction of variables”, used
mainly for crawling. This type of extraction contains,
besides extraction rules, a name and a type parameter
specifying what kind of computation should be performed
after extraction. Type can be one of:

• TEXT – the extracted area is cleared of HTML tags
and the entities are replaced.

• NUMBER – the extracted area is converted into a
number.

• URL – an URL is constructed using as a base the
current URL.

• UNTOUCHED – the extracted area is kept
unmodified. This is usually needed when the area
extracted will be used as source for other extractions,
leading to hierarchical structure.

Optionally, a parsing source can be specified, along with
a re-extraction indicator and a node containing rejection
rules. If rejection rules are applied successfully inside
extracted area then the extraction is invalidated. The
indicator specifies that if the extraction is unsuccessful
then the corresponding variable will remain with the
previous value. In absence of the indicator, assigning a
null value to the corresponding variable signals an
unsuccessful extraction.

Another specialized form of extraction is that used to
extract hidden fields. The source for extraction is
specified using a variable name or using extraction rules
that will be applied in the currently downloading page.
The result of the extraction will have a “query” format
and it will be saved into a variable specified by the name
parameter. Optionally, an encoding and an indicator to
extract also fields without value can be added.

For facilitating description for crawling that has a tree like
structure, a special construct was added, named
REPEATED_EXTRACTION, which may contain:

• An optionally source, specified as a variable name or
using extraction rules. If missing, the entire page is
assumed.

• A set of rules describing a block extraction. The next
block is extracted from the region starting after the
end of the previous block.

• Extraction of variables, which are tried inside every
block.

• A set of instructions that are executed for every block,
after variables extraction.

This is needed, for instance when records are partitioned
using various criteria and can be accessed through a page
containing a link for every set.

The purpose of the wrapper is records extraction. Record
extraction is defined by the following elements:

• An optionally source for all the records that can be
specified as a variable name or using extraction rules.
If missing, the entire page is assumed.

• RECORD_BOUNDARIES – extraction rules that
define a region containing exactly one record. The
rules are applied starting from the end of the last
extracted record. This is based on “the assumption that
there exist (invisible) disjoint rectangular regions such
that each region contains the attributes for one unique
tuple” (Irmak et al., 2006), assumption confirmed by
our experience.

• REJECTION_RULES – if these rules are successfully
applied inside record boundaries then the record is
considered invalid.

• Zero or more FIELD nodes – a field node may contain
extraction rules, variables extractions and instructions.
The later are used when the field is composed. Its type
can be URL or TEXT. The label of the field is given
by its name. All the extractions are applied inside the
record boundaries.

• Zero or more EXTENDED_FIELD nodes – their
structure is similar with that of the regular field but the
source is the page downloaded using the FIELD
extracted under the name url.

Extraction of tables having a variable number of columns
is specified using TABLE_HEADERS and
TABLE_FIELDS elements. Each of them contains an
optionally source and rules which extract a single cell.

Table headers can be global for all records from page or
can be specific for every record. The association between
headers and fields is done automatically, based on their
relative order.

The language has also a specialized construct used to
extract fields that have a visual aspect similar with nested
tables, but without headers.

For optimization purposes, when the source for the
repeated extraction and for records extraction is not the
entire downloading page, the area containing the desired
information can be designated using two sets of rules,
called START_RULES and END_RULES. The block and
record boundaries extraction is valid if start rules can be
successfully applied before the beginning of the block
(record) and the end rules cannot be applied in the region
between the start of the page and the end of the block
(record). The source can be specified using only start
rules or only end rules. Specifying a variable name as a
source has a different semantic: start the extraction of
blocks (records) only if the variable is successfully
extracted and that decision cannot be made until the entire
area containing the variable is downloaded.

6. INSTRUCTIONS

The first instruction presented is maybe the most
controversial: GOTO a state name. We preferred this to
describe the flow of wrapper’s actions because was the
best choice for a visual representation. But there was a
price to pay when implementing the generator, which
transforms WDL in java.

An instruction that is essential for the language
expressiveness is CALL, which has a single parameter, a
filename containing a WDL description. The call is
transformed in java as a function call for which the input-
output parameters are determined automatically.

For manipulating queries there are two instructions:
REPLACE_IN_QUERY and GET_VALUE_FROM_
QUERY. First allows to change and the second to obtain
the value for a certain parameter.

For cookies manipulation, the language possesses an
instruction that clears all the cookies and an instruction
that adds a specific cookie. The cookies are obtained
automatically from http responses but sometimes the
wrapper has to “forget” cookies or to add a cookie
obtained in some other way.

For constructing a URL there is a SET_URL instruction
and a SET instruction for assigning an expression to a
variable.

The language has also a conditional instruction similar
with if.

As an alternative for repeated extraction there is an
instruction that allows simultaneous extraction of
information from more than one source. After extracting
one piece of information from each source, a set of
instruction is executed. For each source, a start, a step and
an end parameter can be used, specifying the index of the

first extracted token, the index of next tokens and the
index of the last tokens.

7. COMPILER

The compiler has two stages. In the first stage a rough
Java representation is generated which is completed in the
second stage with GOTO transformations, adding variable
definitions and inserting protections against infinite loops.

The first stage labels code generated by each state in order
to help transforming GOTOs in the next stage.

If the GOTO is a backward jump then it can define a DO
WHILE or a CONTINUE inside a WHILE, depending of
the nesting level at which was found GOTO. The level is
determined for each GOTO in the first stage of the
compiler. When is generated an opening bracket, “{“, the
level is incremented and when is generated a closing
bracket, “}”, the level is decremented. The level starts
from zero. If the level is equal with zero then the
generator tries to generate and DO WHILE. If the level is
equal with one the generator tries first to generate a
CONTINUE and if this is not successful then tries to
generate a DO WHILE. If the level is higher than one
then the compiler tries to generate a CONTINUE.

If the jump defined by the GOTO is forward then we have
the following cases, depending again on the level value. If
the level is zero then it can define only an ELSE block. If
the level is equal with one then it can define a method
call, a WHILE block, a BREAK, a CONTINUE, an IF or
an ELSE. First it tries to generate a WHILE, next it tries o
generate a CONTINUE inside a DO WHILE. If the
previous attempts are not successful then it tries to
generate a BREAK instruction then it tries first to detect if
it is defining an ELSE construction and next a function
call. If the level is greater than one then the options are
CONTINUE inside a DO WHILE, a BREAK or a
function call, in that order.

8. RECORDS EXTRACTION

This is a two step process. In the first step the records
boundaries are established. The user will select the first
record and will indicate the total number of records from
the page.

The wizard will try to determine the rest of the records
and will visualize the result. The user can correct the
wizard by invalidating a supposed record or by selecting
other records, until the visually selected records are
correct. In the second step the field extractions will
be generated after the user will label the fields from one
or more records. Again, the process can be repeated until
the correct result will be obtained.

Some special cases are: table fields, having record
specific headers or global headers, loop fields and fields
that are obtained by concatenating different pieces of
information.

The main effort so far was devoted to record extraction
and text field extraction. The current implementation

covers around 80% for records boundaries and 50% for
text field extraction.

The records boundaries are found using the following
algorithm: first a defining tag is searched, which can be
found at the start, at the end or in the middle of the
records, then the remaining boundaries are searched for
starting from those defining tags.

A defining tag for records is a tag that can be found only
once for every record and not in the rest of the page. If the
defining tag is found in the middle of the record then at
least one end must be found using a single rule with a
single tag. The other end of the records can be found
using more than one rule, but they use no more than two
tags, only one searched for more than once, and all rules
search for only one tag.

When searching for fields first a defining tag must be
found that must indicate either the beginning or the end of
the field. The defining tag is searched for starting from
the beginning of the record or, if the later search was
unsuccessful, the defining tag is searched for starting
from the end. If such a tag can be found then the
algorithm fails. After finding a defining tag which
determines correctly all confirmed fields and the biggest
number of unconfirmed fields the algorithm proceeds to
search for rules which found the other end. First the
wizard searches for a single tag that can be used to find
the other end starting from the end already found. If such
a tag cannot be found then algorithm tries to find a tag
which determines correctly the end and then searches for
a tag which used repeatedly, a constant number of times,
will help to find the delimiting tag.

This implementation was chosen because it is faster and
easier to implement and maintain.

Estimate and other singular extractions will be extracted
by visually selecting the desired region and then label it.
Thus specific information (such as estimated number of
records returned by the native site) can be extracted and
deposited in the right fields.

In order to improve record and text field extraction the
following must be done. There can be some cases
uncovered by the wizard when:

• The defining tag can be found also outside records
region. In this case the wizard must search for start
or/and end rules. The record extraction is valid only if
the search rules are successful before the start of the
record and the end rules are not successful before the
end of the record.

• There is not a defining tag but only a defining
structure, a succession of tags that can be found once
for every record.

• The defining tag or defining structure is not the same
for all records. Usually odd records can have a
structure and even records can have another, for
example different colors. Also, there can be a different
structure for records that need to be emphasized for
some particular reason in which case the pattern for

finding the records will be difficult, even impossible,
to find given that we know only the first record and
the total number of records. In that case the user will
be asked to label a particular record.

The cases uncovered by the wizard when determining text
field extractions can be one of the following:

• Neither of the field ends can be found using a single
rule with a unique tag. In this case, an approach
similar with that used when searching for the other
end with multiple rules can be employed.

• The structure is not the same for all the fields. This
will be the most difficult case to tackle.

• Searching first for one end and, after finding the best
choice, starting to search the other end may not lead to
a solution.

One of the reasons for this can be that when searching
only for the first end we can't detect that the field
extracted will overlap another extracted field, for a record
that doesn't contain an instance of the field searched for,
because it is near information that won't be extracted,
such as a label for the next field. For instance, the
algorithm may detect when searching for start of
description field the start of the text “Author: John Stuart
Mill”. The fact that the extracted field overlaps "John
Stuart Mill", assuming that the author was extracted early,
can be detected only after detecting the other end and in
that stage this can be too late. The user can overcome that
by labelling first all the information extracted incorrectly,
even if this information doesn't need to be extracted. The
algorithm can be improved by searching simultaneously
for both ends but this will increase the time of execution
exponentially because for every potential tag found for
one end the best tag for the other end must be found.

A case with a similar solution is when we have a
following template. One record:

 “

CRAWFORD, DANIEL J.CLEVELAND, JEFF I.,
IISTAIB, RICHARD O. (NASA, Langley Research
Center, Hampton, VA)

AIAA-1988-4595

IN: Flight Simulation Technologies Conference,
Atlanta, GA, Sept 7-9, 1988, Technical Papers (A88-
53626 23-09). Washington, DC, American Institute of
Aeronautics and Astronautics, 1988, p. 109-121.

<FORM ACTION="../store/MtgPaperPurchase.cfm"
METHOD="Post">

”
Another record:

“

HAJELA, P. (Rensselaer Polytechnic Inst., Troy,
NY) BERKE, L. (NASA,Lewis Research Center,
Cleveland, OH)

AIAA-1992-4805

<FORM ACTION="../store/MtgPaperPurchase.cfm"
METHOD="Post">

“

 When extracting the field "IN: Flight Simulation
Technologies Conference, Atlanta, GA, Sept 7-9, 1988,
Technical Papers (A88-53626 23-09). Washington, DC,
American Institute of Aeronautics and Astronautics, 1988,
p. 109-121." a defining tag is found at the end of the field
but when searching the other end there is no solution
because the number of the
 tags is variable. But if a
different approach will be used, searching first for the
start of the field, the number of
 tags is constant,
assuming that the previous fields are always present. If
the later assumption is not true we have only the choice of
selecting entire text as a citation field and we can have a
similar problem. Another solution to this problem is to try
first the fastest choices and go to the slower ones if they
fail. But we still need to implement detection of the first
end using multiple rules which is little difficult than
searching for the other end because in the later we have
more information.

9. CONCLUSIONS

In (Gottlob et al., 2004) is stated that a suitable wrapping
language over document trees is required to have the
following properties:
(i) has a solid and well understood theoretical foundation,
(ii) provides a good trade-off between complexity and the
number of practical wrappers that can be expressed,
(iii) is easy to use as a wrapper programming language,
and
(iv) is suitable for being incorporated into visual tools,
since ideally all constructs of a wrapping language can be
realized through corresponding visual primitives.

The structure of the language was designed to be easy to
use as a wrapper programming language and is already
incorporated into visual tools. Using WDL as a
programming language increased the productivity of the
wrappers department with 300% and allowed employment
of people without programming skills.

Regarding the trade-off between complexity and the
number of practical wrappers, we had an initial target of
90% coverage and we obtained 100%. Actually, the
language was continually improved during
implementation of the first two hundred wrappers and
from that point we reached 1286 wrappers without the
need to extend the language. This can be an indication
that the language is complete, at least from the point of a
meta-search application.

Currently, we have developed 1286 wrappers, which
cover more than 4000 sources.

Regarding productivity improvements achieved using
those tools our experiments showed that after third stage
the development time was reduced with 20% and with an
additional 30% after the fourth stage.

The automatic parsing generation might be improved
from graphically markup to heuristic analyzes for
automatic extraction and qualification. At this stage we’ll
reduce the development time with 15%.

In this stage, the tools above will be extended to
incorporate similar browser functionality and record the
steps made by the user (connector developer) to perform
the query. This suite tool will reduce the time needed to
develop a wrapper with a total of 85%.

Other improvements that can be added are:

• Improve the usability when the wizard is used for
fixes. Now the wizard starts and generates the
extractions from scratch, whatever extractions already
present are not taken into account.

• Add support for URL field extraction.
• Improve single URL extractions.
• Construct a database which will store information

about every step executed when generating wrappers
or (html pages, extracted information, chosen
strategies). This is needed for immediate use for the
polymorphic html pages and in the future for
improving the extractions. Also this database can be
used to automatically repair wrappers.

• Generate estimate extraction using user selection.
• Generate extraction for table fields, loop fields.
• Generate extractions for repeated parsing.
• Generate representation for actions such as selecting

databases.
• Add support for JavaScript.
• Add support for AJAX.

A permanent task will be to reduce user interactions and
maybe to improve the extraction mechanism used by
connectors, based on information gathered in the
database.

REFERENCES

Baumgartner, R., Flesca, S., and Gottlob, G. (2001).
Visual Web information extraction with Lixto. In
VLDB Journal, pp. 119–128.

Huck, G., Fankhauser, P., Aberer, K., and Neuhold, E.J.
(1998). Jedi: Extracting and synthesizing information
from the Web. In Proceedings of Conference on
Cooperative Information Systems, pp. 32–43.

Gottlob, G., and Koch, C. (2002). Monadic Datalog and
the Expressive Power of Languages for Web
Information Extraction. In Proceedings of Symposium
on Principles of Database Systems, pp. 17-28.

Gottlob, G., Koch, C., Baumgartner, R., Herzog, M., and
Flesca, S. (2004). The Lixto Data Extraction Project -
Back and Forth between Theory and Practice. In
PODS '04: Proc. of 23rd ACM SIGMOD-SIGACT-
SIGART Symposium. on Principles of Database
Systems, pp. 1-12.

Irmak, U., and Suel, T. (2006). Interactive Wrapper
Generation with Minimal User Effort. In Technical
Report TR-CIS-2005-02. CIS Dept., Polytechnic
University, Brooklyn, NY.

Kapow Technologies. (2006). RoboMaker User Guide.
http://kdc.kapowtech.com/documentation_6_0/robosui
te/RoboMakerUsersGuide.pdf.

Kuhlins, S. and Tredwell, R. (2003). Toolkits for
Generating Wrappers. A Survey of Software Toolkits
for Automated Data Extraction from Websites. In
LNCS, vol. 2591, pp. 184–198. Springer, Berlin.

Laender, A., Berthier, A., Ribeiro-Neto, Silva, A., and
Teixeira, J.S. (2002). A Brief Survey of Web Data
Extraction Tools. In SIGMOD Record, vol. 31(2), pp.
84-93.

Liu, L., Pu, C., and Han, W. (2000). XWRAP: An XML-
enabled wrapper construction system for web
information sources. In Proceedings of International
Conference on Data Engineering (ICDE), pp. 611-
621.

Miler, R. (2002). Lightweight Structured Text Processing.
PhD Thesis, Computer Science Department, Carnegie
Mellon University.

Muslea, I., Minton, S., and Knoblock, C.A. (2001).
Hierarchical Wrapper Induction for Semistructured
Information Sources. In Autonomous Agents and
Multi-Agent Systems, vol. 4(1), pp. 93-114.

Muslea, I., Minton, S., and Knoblock, C.A. (1998).
Stalker: Learning extraction rules for semistructured,
web-based information sources. In AAAI Workshop on
AI and Information Integration.

Zhao, H., Meng, W., Wu, Z., Raghavan, V., and Yu, C.
(2005). Fully Automatic Wrapper Generation for
Search Engines. In Proceedings of 14th International
World Wide Web Conference (WWW14), pp.66-75.

